Problem E. Exp

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	512 mebibytes

Find the expected amount of experience a hero will get for beating n monsters one by one, given that beating each monster gives the hero i units of experience $(0 \leq i \leq k)$ with probability p_{i} independently, but if the hero gets more than x units of experience in total, their experience is capped to exactly x units, and display it modulo 998244353.

Input

The first line contains three integers n, k, and $x\left(1 \leq n \leq 10^{7} ; 1 \leq k \leq 100 ; 1 \leq x \leq \min \left(10^{7}, \frac{5 \cdot 10^{7}}{k}\right)\right)$.
The second line contains $k+1$ real numbers $p_{0}, p_{1}, \ldots, p_{k}\left(0<p_{i}<1\right)$, given with exactly 4 decimal digits. The sum of p_{i} is equal to 1 .

Output

Display the expected amount of experience the hero will get.
It can be shown that the sought number can be represented as an irreducible fraction $\frac{p}{q}$ such that $q \not \equiv 0$ (mod $998244353)$. Then, there exists a unique integer r such that $r \cdot q \equiv p(\bmod 998244353)$ and $0 \leq r<998244353$, so display this r.

Examples

standard input	standard output
$\begin{array}{lll} 212 & \\ 0.5000 & 0.5000 \end{array}$	1
$\begin{array}{l\|ll} \hline 2 & 1 & 1 \\ 0.5000 & 0.5000 \end{array}$	249561089
$\begin{array}{llll} 425 & & \\ 0.2000 & 0.5000 & 0.3000 \end{array}$	909700083
$\begin{array}{lllll} \hline 10423 & & & \\ 0.4533 & 0.2906 & 0.1618 & 0.0071 & 0.0872 \end{array}$	433575862

Note

In the first test case, the hero will get 0 units of experience with probability $\frac{1}{4}, 1$ unit of experience with probability $\frac{1}{2}$, and 2 units of experience with probability $\frac{1}{4}$. Hence, the expected amount is 1 .
In the second test case, the hero will get 0 units of experience with probability $\frac{1}{4}$, and 1 unit of experience with probability $\frac{3}{4}$. The expected amount is $\frac{3}{4}$.

