

Problem F. Flip

Input file:	standard input
Output file:	standard output
Time limit:	10 seconds
Memory limit:	512 mebibytes

Assuming people numbered from 1 to 2n are assigned to two teams of size n using the following non-deterministic procedure, find the probability that all people from the set $A^i = \{a_1^i, a_2^i, \ldots, a_{k_i}^i\}$ end up on the same team, for each of the given sets A^1, A^2, \ldots, A^m , and display it modulo 998 244 353:

- in order from 1 to 2n, each person flips a fair coin;
- if the coin lands heads up, the person joins the first team unless that team already has n people, in which case the person joins the second team;
- similarly, if the coin lands tails up, the person joins the second team unless that team already has n people, in which case the person joins the first team.

Input

The first line contains two integers n and m $(2 \le n \le 10^5; 1 \le m \le 10^5)$.

The *i*-th of the next *m* lines describes set A^i and contains an integer k_i $(2 \le k_i \le n)$, followed by k_i integers $a_1^i, a_2^i, \ldots, a_{k_i}^i$ $(1 \le a_1^i < a_2^i < \ldots < a_{k_i}^i \le 2n)$.

The sum of k_i does not exceed $2 \cdot 10^5$.

Output

For each i from 1 to m, display the probability that all people from the set A^i end up on the same team.

It can be shown that any sought probability can be represented as an irreducible fraction $\frac{p}{q}$ such that $q \neq 0 \pmod{998244353}$. Then, there exists a unique integer r such that $r \cdot q \equiv p \pmod{998244353}$ and $0 \leq r < 998244353$, so display this r.

Examples

standard input	standard output
2 6	499122177
2 1 2	748683265
2 1 3	748683265
2 1 4	748683265
2 2 3	748683265
2 2 4	499122177
2 3 4	
3 5	935854081
3 2 3 5	623902721
2 2 4	374341633
256	935854081
3 1 4 6	686292993
2 2 5	

Note

In the first test case, people 1 and 2 (and people 3 and 4) end up on the same team with probability $\frac{1}{2}$. For any other pair the probability is $\frac{1}{4}$.