Problem F. Flip

Input file:	standard input
Output file:	standard output
Time limit:	10 seconds
Memory limit:	512 mebibytes

Assuming people numbered from 1 to $2 n$ are assigned to two teams of size n using the following non-deterministic procedure, find the probability that all people from the set $A^{i}=\left\{a_{1}^{i}, a_{2}^{i}, \ldots, a_{k_{i}}^{i}\right\}$ end up on the same team, for each of the given sets $A^{1}, A^{2}, \ldots, A^{m}$, and display it modulo 998244353 :

- in order from 1 to $2 n$, each person flips a fair coin;
- if the coin lands heads up, the person joins the first team unless that team already has n people, in which case the person joins the second team;
- similarly, if the coin lands tails up, the person joins the second team unless that team already has n people, in which case the person joins the first team.

Input

The first line contains two integers n and $m\left(2 \leq n \leq 10^{5} ; 1 \leq m \leq 10^{5}\right)$.
The i-th of the next m lines describes set A^{i} and contains an integer $k_{i}\left(2 \leq k_{i} \leq n\right)$, followed by k_{i} integers $a_{1}^{i}, a_{2}^{i}, \ldots, a_{k_{i}}^{i}\left(1 \leq a_{1}^{i}<a_{2}^{i}<\ldots<a_{k_{i}}^{i} \leq 2 n\right)$.
The sum of k_{i} does not exceed $2 \cdot 10^{5}$.

Output

For each i from 1 to m, display the probability that all people from the set A^{i} end up on the same team.
It can be shown that any sought probability can be represented as an irreducible fraction $\frac{p}{q}$ such that $q \not \equiv 0(\bmod$ $998244353)$. Then, there exists a unique integer r such that $r \cdot q \equiv p(\bmod 998244353)$ and $0 \leq r<998244353$, so display this r.

Examples

standard input	standard output
26	499122177
212	748683265
213	748683265
214	748683265
223	748683265
224	499122177
234	
35	935854081
3235	623902721
224	374341633
256	935854081
3146	686292993
225	

Note

In the first test case, people 1 and 2 (and people 3 and 4) end up on the same team with probability $\frac{1}{2}$. For any other pair the probability is $\frac{1}{4}$.

