Problem I. Ineq

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Given a set of integer pairs $S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, determine if a set of integer triples $T=\left\{\left(a_{1}, b_{1}, c_{1}\right), \ldots,\left(a_{m}, b_{m}, c_{m}\right)\right\}$ exists such that $a_{i} x_{j}+b_{i} y_{j}<c_{i}$ for all i and j, and there doesn't exist an integer pair (x^{\prime}, y^{\prime}) not belonging to S such that $a_{i} x^{\prime}+b_{i} y^{\prime}<c_{i}$ for all i.

Input

The first line contains a single integer $t\left(1 \leq t \leq 10^{5}\right)$, denoting the number of test cases.
Each test case is described with an integer $n\left(1 \leq n \leq 10^{5}\right)$, followed by n lines containing two integers x_{i} and y_{i} each $\left(-10^{9} \leq x_{i}, y_{i} \leq 10^{9}\right)$. All pairs $\left(x_{i}, y_{i}\right)$ within one test case are distinct.
The sum of n over all test cases does not exceed 10^{5}.

Output

For each test case, display a separate line with 1 if the answer is positive, and 0 otherwise.

Example

	standard input	
4		1
1		1
0	0	1
5		
2	1	
0	0	
1	1	
1	0	
2	2	
3		
1	3	
5	1	
4	2	
3		
1	3	1

Note

In the first test case, one possible set of triples is $\{(1,0,1),(0,1,1),(-1,0,1),(0,-1,1)\}$.

