

Problem I. Ineq

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Given a set of integer pairs $S = \{(x_1, y_1), \ldots, (x_n, y_n)\}$, determine if a set of integer triples $T = \{(a_1, b_1, c_1), \ldots, (a_m, b_m, c_m)\}$ exists such that $a_i x_j + b_i y_j < c_i$ for all i and j, and there doesn't exist an integer pair (x', y') not belonging to S such that $a_i x' + b_i y' < c_i$ for all i.

Input

The first line contains a single integer t $(1 \le t \le 10^5)$, denoting the number of test cases.

Each test case is described with an integer n $(1 \le n \le 10^5)$, followed by n lines containing two integers x_i and y_i each $(-10^9 \le x_i, y_i \le 10^9)$. All pairs (x_i, y_i) within one test case are distinct.

The sum of n over all test cases does not exceed 10^5 .

Output

For each test case, display a separate line with 1 if the answer is positive, and 0 otherwise.

Example

standard input	standard output
4	1
1	1
0 0	0
5	1
2 1	
0 0	
1 1	
1 0	
2 2	
3	
1 3	
5 1	
4 2	
3	
1 3	
6 1	
4 2	

Note

In the first test case, one possible set of triples is $\{(1,0,1), (0,1,1), (-1,0,1), (0,-1,1)\}$.