Problem H. Hill

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

Having stocked up with snowballs, Zenyk and Marichka already wanted to start a game.
But suddenly, Zenyk thought that throwing snowballs on a flat surface is boring. He wanted to build as high as possible hill for himself to climb at it and throw snowballs at Marichka.
Building of a hill isn't easy. Zenyk treated it seriously, took a sheet of paper with coordinate axes, where y-axis is directed upwards, and began to draw the cross section of a hill (a front view).
Marichka doesn't want the hill to be too high, so she imposed some constraints at its section.

1. Section must be a polygonal chain.
2. The chain must start at point $\left(x_{0}, y_{0}\right)$ and end at point $\left(x_{n}, y_{n}\right)$.
3. The chain must contain n segments.
4. The length of the i-th segment should be l_{i}.

Zenyk wants to know the maximum height he of a hill he can make under these constraints, and asks you the maximal y-coordinate of the hill's section. Help him find it.

Input

The first line contains four integers $x_{0}, y_{0}, x_{n}, y_{n}\left(\left|x_{0}\right|,\left|y_{0}\right|,\left|x_{n}\right|,\left|y_{n}\right| \leq 10^{6}\right)$ - coordinates of start and end of the chain.
The second line contains an integer $n\left(1 \leq n \leq 10^{5}\right)$ - number of segments in the chain.
The third line contains n integers $l_{1}, \ldots, l_{n}\left(1 \leq l_{i} \leq 10^{6}\right)$ - lengths of the segments.

Output

If there is no hill that satisfies these constraints, output "IMPOSSIBLE".
Otherwise, output one real number - the maximum y-coordinate of the highest point. The answer will be considered correct if its absolute or relative error doesn't exceed 10^{-7}.

Examples

standard input	standard output		
2	3	3	7.0000000000
5	5		
474477			
4	7	7	
4	7	IMPOSSIBLE	

