

Problem H. Hill

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

Having stocked up with snowballs, Zenyk and Marichka already wanted to start a game.

But suddenly, Zenyk thought that throwing snowballs on a flat surface is boring. He wanted to build as high as possible hill for himself to climb at it and throw snowballs at Marichka.

Building of a hill isn't easy. Zenyk treated it seriously, took a sheet of paper with coordinate axes, where y-axis is directed upwards, and began to draw the cross section of a hill (a front view).

Marichka doesn't want the hill to be too high, so she imposed some constraints at its section.

- 1. Section must be a polygonal chain.
- 2. The chain must start at point (x_0, y_0) and end at point (x_n, y_n) .
- 3. The chain must contain n segments.
- 4. The length of the *i*-th segment should be l_i .

Zenyk wants to know the maximum height he of a hill he can make under these constraints, and asks you the maximal y-coordinate of the hill's section. Help him find it.

Input

The first line contains four integers x_0 , y_0 , x_n , y_n ($|x_0|, |y_0|, |x_n|, |y_n| \le 10^6$) – coordinates of start and end of the chain.

The second line contains an integer $n \ (1 \le n \le 10^5)$ — number of segments in the chain.

The third line contains n integers l_1, \ldots, l_n $(1 \le l_i \le 10^6)$ — lengths of the segments.

Output

If there is no hill that satisfies these constraints, output "IMPOSSIBLE".

Otherwise, output one real number — the maximum y-coordinate of the highest point. The answer will be considered correct if its absolute or relative error doesn't exceed 10^{-7} .

Examples

standard input	standard output
2383	7.000000000
2	
5 5	
4 7 44 77	IMPOSSIBLE
4	
4774	