
38th Petrozavodsk Programming Camp, Winter 2020
Day 8: Almost Algoritmic Contest, Thursday, February 6, 2020

Problem D. FFT Algorithm
Input file: standard input

Output file: standard output

Time limit: 1.5 seconds
Memory limit: 256 mebibytes

When I want to apply FFT algorithm to polynomial of degree less than 2k in modular arithmetics, I have to find
ω — a primitive 2k-th root of unity.

Formally, for two given integers m and k, I should find any integer ω such that:

• 0 ≤ ω < m,

• ω2k ≡ 1 (mod m),

• ωp 6≡ 1 (mod m) for all 0 < p < 2k.

In this task, I ask you to find ω for me, or determine that it does not exist. Since we talk about application of
FFT, I’ve set some reasonable limitations for k: for smaller k naive polynomial multiplication is fine, and for
larger k FFT takes more than 1 second (we are competitive programmers after all).

Input

The only line of input contains two integers m and k (2 ≤ m ≤ 4 · 1018, 15 ≤ k ≤ 23).

Output

Print any ω satisfying the criteria, or print −1 if there is no such ω.

Examples

standard input standard output

998244353 23 683321333

1048576 15 64609

3 23 -1

Page 4 of 14


