
38th Petrozavodsk Programming Camp, Winter 2020
Day 8: Almost Algoritmic Contest, Thursday, February 6, 2020

Problem E. Binary Search Algorithm
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 256 mebibytes

This is an interactive problem.

I have a hidden permutation p1, p2, . . . , pn. You are not to guess it. Your task is to devise a data structure (that’s
against the rules!) that supports the following operations on a set S, which is initially empty:

• “add x” — put element x in S,

• “delete x” — delete element x from S,

• “getMin” — print the element x from S such that px is the smallest among x in S.

You will have to perform “getMin” after each operation of other types.

You don’t know the permutation, but you can make queries. In one query you can choose k distinct indices x1, x2,
. . . , xk for some value of k, and in return I will tell you the permutation of these indices y1, y2, . . . , yk such that
py1 < py2 < . . . < pyk

. In other words, I will sort the indices according to p.

Note that all xi should be present in S at the moment of query.

It is easy to perform “getMin” in 1 query — just sort everything in S. It is also not hard to perform it using
several queries with sum of k up to O(log n). Can you flex your algorithm (this is lame) muscles and satisfy both?

Note that since you don’t know p and my task is to make your solution fail, I can change p depending on your
queries, but only in such a way that all my previous responses are correct. I can also choose the order of operations
you have to perform depending on your queries.

Input

Initially you are given a single line with one integer n (1 ≤ n ≤ 8000) — the number of elements. Each element
will be inserted and deleted exactly once.

Interaction Protocol

Then there will be exactly 2n rounds of interaction.

Each round of interaction consists of 4 phases:

1. you read the next operation on a separate line: either “add x” or “delete x” for some 1 ≤ x ≤ n;

2. you choose some 0 ≤ k ≤ min(|S|, 30) and print k + 1 numbers on a separate line: k first, then x1, x2, . . . ,
xk: the k elements you want to sort. Elements you choose should be between 1 and n, should be distinct,
and should be in S at this time. Note that S is already changed according to phase 1;

3. you read k integers y1, y2, . . . , yk on a separate line: y is a permutation of x you just printed, and
py1 < py2 < . . . < pyk

;

4. you print a single integer x on a separate line, such that x is in S, and px is the smallest possible. Print −1
if S is empty.

It is guaranteed that all 2n possible operations (“add x” and “delete x” for all 1 ≤ x ≤ n) will occur exactly
once, and for each x operation “add x” will precede “delete x”.

Do not forget to print end of line and flush your output before you read anything.

Page 5 of 14

38th Petrozavodsk Programming Camp, Winter 2020
Day 8: Almost Algoritmic Contest, Thursday, February 6, 2020

Example

standard input standard output

3

add 1

1

add 3

3 1

delete 1

3

add 2

3 2

delete 3

2

delete 2

1 1

1

2 1 3

3

1 3

3

2 2 3

3

1 2

2

0

-1

Note

In the example p = [2, 3, 1].

Page 6 of 14

