Problem E. Binary Search Algorithm

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

This is an interactive problem.
I have a hidden permutation $p_{1}, p_{2}, \ldots, p_{n}$. You are not to guess it. Your task is to devise a data structure (that's against the rules!) that supports the following operations on a set S, which is initially empty:

- "add $x "$ - put element x in S,
- "delete x " - delete element x from S,
- "getMin" - print the element x from S such that p_{x} is the smallest among x in S.

You will have to perform "getMin" after each operation of other types.
You don't know the permutation, but you can make queries. In one query you can choose k distinct indices x_{1}, x_{2}, \ldots, x_{k} for some value of k, and in return I will tell you the permutation of these indices $y_{1}, y_{2}, \ldots, y_{k}$ such that $p_{y_{1}}<p_{y_{2}}<\ldots<p_{y_{k}}$. In other words, I will sort the indices according to p.
Note that all x_{i} should be present in S at the moment of query.
It is easy to perform "getMin" in 1 query - just sort everything in S. It is also not hard to perform it using several queries with sum of k up to $O(\log n)$. Can you flex your algorithm (this is lame) muscles and satisfy both?

Note that since you don't know p and my task is to make your solution fail, I can change p depending on your queries, but only in such a way that all my previous responses are correct. I can also choose the order of operations you have to perform depending on your queries.

Input

Initially you are given a single line with one integer $n(1 \leq n \leq 8000)$ - the number of elements. Each element will be inserted and deleted exactly once.

Interaction Protocol

Then there will be exactly $2 n$ rounds of interaction.
Each round of interaction consists of 4 phases:

1. you read the next operation on a separate line: either "add x " or "delete x " for some $1 \leq x \leq n$;
2. you choose some $0 \leq k \leq \min (|S|, 30)$ and print $k+1$ numbers on a separate line: k first, then x_{1}, x_{2}, \ldots, x_{k} : the k elements you want to sort. Elements you choose should be between 1 and n, should be distinct, and should be in S at this time. Note that S is already changed according to phase 1;
3. you read k integers $y_{1}, y_{2}, \ldots, y_{k}$ on a separate line: y is a permutation of x you just printed, and $p_{y_{1}}<p_{y_{2}}<\ldots<p_{y_{k}}$;
4. you print a single integer x on a separate line, such that x is in S, and p_{x} is the smallest possible. Print -1 if S is empty.

It is guaranteed that all $2 n$ possible operations ("add x " and "delete x " for all $1 \leq x \leq n$) will occur exactly once, and for each x operation "add x " will precede "delete x ".

Do not forget to print end of line and flush your output before you read anything.

Example

standard input	standard output
3 add 1	
	11
1	
	1
add 3	
	213
31	
	3
delete 1	
	13
3	
	3
add 2	
	223
32	
	3
delete 3	
	12
2	
	2
delete 2	
	0
	-1

Note

In the example $p=[2,3,1]$.

