Problem G. Petr's Algorithm

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

Petr is well-known for his unusual contests which shuffle well-established standings a lot. Each of his contests has a positive integer parameter k : its unusualness.
To predict results of such a contest with n participants, we can use the following algorithm: take an identity permutation of length n : $p_{1}=1, p_{2}=2, \ldots, p_{n}=n$ and then sequentially shuffle all segments of length k from left to right.
In other words, we perform $(n-k+1)$ operations, where on the i-th operation we permute elements p_{i}, p_{i+1}, \ldots, p_{i+k-1} in random order so that all the permutations of these elements are equiprobable.

Given the resulting permutation p, can you recover the unusualness parameter k of this particular Petr's contest? To make things easier, we will only give you such tests that $20 k \leq n$ holds.

Input

The first line contains a single integer $n\left(40 \leq n \leq 10^{5}\right)$ - the length of the permutation.
The second line contains n distinct integers $p_{1}, p_{2}, \ldots, p_{n}\left(1 \leq p_{i} \leq n\right)$ - the resulting permutation. It is guaranteed that this permutation was generated using the algorithm described above for some k such that $20 k \leq n$.

Output

Print a single integer - the unusualness parameter k of this particular Petr's contest.

Example

standard input	standard output
40	2
$\begin{array}{lllllllllll}2 & 3 & 4 & 1 & 6 & 5 & 8 & 9 & 7 & 11\end{array}$	
$\begin{array}{llllllllllllllllllll}10 & 12 & 14 & 13 & 15 & 17 & 18 & 16 & 19 & 20\end{array}$	

Note

The line breaks in the example are added for clarity and do not exist in real tests.

