

Problem G. Petr's Algorithm

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

Petr is well-known for his unusual contests which shuffle well-established standings a lot. Each of his contests has a positive integer parameter k: its unusualness.

To predict results of such a contest with n participants, we can use the following *algorithm*: take an identity permutation of length n: $p_1 = 1, p_2 = 2, ..., p_n = n$ and then sequentially shuffle all segments of length k from left to right.

In other words, we perform (n - k + 1) operations, where on the *i*-th operation we permute elements $p_i, p_{i+1}, \ldots, p_{i+k-1}$ in random order so that all the permutations of these elements are equiprobable.

Given the resulting permutation p, can you recover the *unusualness* parameter k of this particular Petr's contest? To make things easier, we will only give you such tests that $20k \leq n$ holds.

Input

The first line contains a single integer $n \ (40 \le n \le 10^5)$ — the length of the permutation.

The second line contains n distinct integers p_1, p_2, \ldots, p_n $(1 \le p_i \le n)$ — the resulting permutation. It is guaranteed that this permutation was generated using the algorithm described above for some k such that $20k \le n$.

Output

Print a single integer — the *unusualness* parameter k of this particular Petr's contest.

Example

standard input	standard output
40	2
2 3 4 1 6 5 8 9 7 11	
10 12 14 13 15 17 18 16 19 20	
21 23 22 25 26 24 28 27 30 29	
32 33 31 35 36 37 38 34 40 39	

Note

The line breaks in the example are added for clarity and do not exist in real tests.