Problem H. Greedy Algorithm

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

I'm playing Super Mario Galaxy 3 (thanks for the copy, Nintendo). Most of the levels are small planets in a shape of sphere, but bonus levels are something different. They are in a shape of torus. You can imagine it as rectangle with both pairs of opposite sides glued together. As a tribute to 8 -bit predecessors, the surface of the planet is a small rectangular grid. Each cell in the grid has its own height.
Playing the bonus level consists of two parts. In the first part I can terraform the level by applying zero or more operations. In one operation I choose a row or a column in the grid, and increase the heights of all the cells in that row or column by one. I can perform this operation any number of times with same or different rows and columns.
After the terraforming a coin appears at each common side of two cells of equal height, and I can collect them. I'm good at platforming, so collecting all the coins is not a problem. Designing algorithm for terraforming the level so that the maximum possible number of coins appear - that's the problem. The problem for you, actually.

Input

The first line contains two integers n and $m(2 \leq n, m \leq 50)$ - the dimensions of the rectangular grid.
The next n lines describe the initial heights of all cells. The i-th of them contains m integers $h_{i 1}, h_{i 2}, \ldots, h_{i m}$, where $h_{i j}$ denotes the height of the cell with coordinates (i, j).
All the heights are between 0 and 500 , inclusive. It is not required that this holds after the terraforming.

Output

Print a single integer - the maximum number of coins can appear if I terraform the level optimally.

Examples

	standard input		
2	3		8
1	2	3	
4	5	99	standard output
3	3		14
3	2	4	
2	2	3	
5	4	6	
5	4		
3	6	10	8
0	6	8	8
2	4	5	6
1	5	9	6
3	6	11	12

Note

The level from the first example after an optimal terraforming:

