
38th Petrozavodsk Programming Camp, Winter 2020
Day 8: Almost Algoritmic Contest, Thursday, February 6, 2020

Problem J. Closest Pair Algorithm
Input file: standard input

Output file: standard output

Time limit: 10 seconds
Memory limit: 512 mebibytes

There is a classic problem about finding two closest points amongst a set of points on a plane. There is also a
classic randomized algorithm to solve it, which goes like this:

rotate the plane around the origin by a random angle phi

let p be the array of points

sort p by x coordinate in increasing order

ans = INF;

for (int i = 0; i < n; i++) {

for (int j = i - 1; j >= 0; j--) {

if (p[i].x - p[j].x >= ans) break;

ans = min(ans, dist(p[i], p[j]));

}

}

Here “INF” is some number greater than all distances. The function “dist” returns Euclidean distance between
the given points. Note that all x coordinates are distinct after rotation with probability 1.

I know that the algorithm works well in practice, but how well exactly? I ask you to compute the expected number
of calls of the function “dist”, assuming that the angle “phi” is chosen uniformly at random from the range
[0; 2 · π).

Input

The first line contains a single integer n (2 ≤ n ≤ 250) — the number of points.

The next n lines contains coordinates of points, one per line.

All the coordinates are not greater than 106 by absolute value.

It is guaranteed that all points are distinct. It is guaranteed that no three points lie on the same line.

Output

Print one number — the expected number of calls of the function “dist”.

Your answer is considered correct if its absolute or relative error does not exceed 10−6.

Formally, let your answer be a, and the jury’s answer be b. Your answer is accepted if and only if |a−b|
max (1,|b|) ≤ 10−6.

Examples

standard input standard output

4

0 0

0 1

1 0

1 1

5.0000000000000

3

0 0

0 1

1 0

2.5000000000000

Page 12 of 14

