Problem K. Interactive Algorithm

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	256 mebibytes

This is an interactive problem.
I have a hidden permutation $p_{1}, p_{2}, \ldots, p_{n}$. You are to guess it.
You can make some queries. In one query you tell me a permutation $q_{1}, q_{2}, \ldots, q_{n}$ of length n, and I reply you with similarity of permutations p and q.
The similarity of two permutations is defined as follows. Let $w_{1}, w_{2}, \ldots, w_{n}$ be a permutation, then define $N(w)$ as the set of unordered pairs of adjacent elements in w. For example, $N([4,1,3,2])=\{\{1,4\},\{1,3\},\{2,3\}\}$. This way, the similarity of p and q is the size of $N(p) \cap N(q)$.
You can make at most 25000 queries. Note that no algorithm in the world can distinguish between p and reversed p, so both of these permutations will be accepted as correct answer.
This time I will not mess with you and will not change the hidden permutation. Though I could. You should be thankful, really.

Input

Initially you get a single line with a single integer $n(2 \leq n \leq 400)$ - the size of the hidden permutation.

Output

When you know the hidden permutation, print an exclamation mark "!" and then n integers $p_{1}, p_{2}, \ldots, p_{n}$, or $p_{n}, p_{n-1}, \ldots, p_{1}$.
This does not count towards query limit.

Interaction Protocol

To make a query, print a question mark "?" and then n distinct integers $q_{1}, q_{2}, \ldots, q_{n}$ on a single line $\left(1 \leq q_{i} \leq n\right)$. In response read one integer $s(0 \leq s<n)$ on a single line, the similarity of p and q.
Do not forget to print end of line and flush your output after each query. You can make at most 25000 queries.

Example

standard input	standard output
5	
	? 122345
1	
	? 24351
3	
	? 34251
4	
	$!34251$

