

Greater New York Programming Contest Nassau Community College Garden City, NY

C • Shuffle'm Up

A common pastime for poker players at a poker table is to shuffle stacks of chips. Shuffling chips is performed by starting with two stacks of poker chips, S_1 and S_2 , each stack containing C chips. Each stack may contain chips of several different colors.

The actual shuffle operation is performed by interleaving a chip from S_1 with a chip from S_2 as shown below for C=5:

The single resultant stack, S_{12} , contains 2^*C chips. The bottommost chip of S_{12} is the bottommost chip from S_2 . On top of that chip, is the bottommost chip from S_1 . The interleaving process continues taking the 2^{nd} chip from the bottom of S_2 and placing that on S_{12} , followed by the 2^{nd} chip from the bottom of S_1 and so on until the topmost chip from S_1 is placed on top of S_{12} .

After the shuffle operation, S_{12} is split into 2 new stacks by taking the bottommost C chips from S_{12} to form a new S_1 and the topmost C chips from S_{12} to form a new S_2 . The shuffle operation may then be repeated to form a new S_{12} .

For this problem, you will write a program to determine if a particular resultant stack S_{12} can be formed by shuffling two stacks some number of times.

Input

The first line of input contains a single integer **N**, $(1 \le N \le 1000)$ which is the number of datasets that follow.

Each dataset consists of four lines of input. The first line of a dataset specifies an integer C, $(1 \le C \le 100)$ which is the number of chips in each initial stack $(S_1 \text{ and } S_2)$. The second line of each

Greater New York Regional

Greater New York Programming Contest Nassau Community College Garden City, NY

dataset specifies the colors of each of the C chips in stack S₁, starting with the bottommost chip. The third line of each dataset specifies the colors of each of the C chips in stack S2 starting with the bottommost chip. Colors are expressed as a single uppercase letter (A through H). There are no blanks or separators between the chip colors. The fourth line of each dataset contains 2*C uppercase letters, (A through H), representing the colors of the desired result of the shuffling of S₁ and **S**₂ zero or more times. The bottommost chip's color is specified first.

Output

Output for each dataset consists of a single line that displays the dataset number (1 though N), a space, and an integer value which is the *minimum* number of shuffle operations required to get the desired resultant stack. If the desired result can not be reached using the input for the dataset, display the value negative 1 (-1) for the number of shuffle operations.

Sample Input	Sample Output	
2	1 2	
4	2 -1	
АНАН		
нана		
ННААААНН		
3		
CDE		
CDE		
EEDDCC		