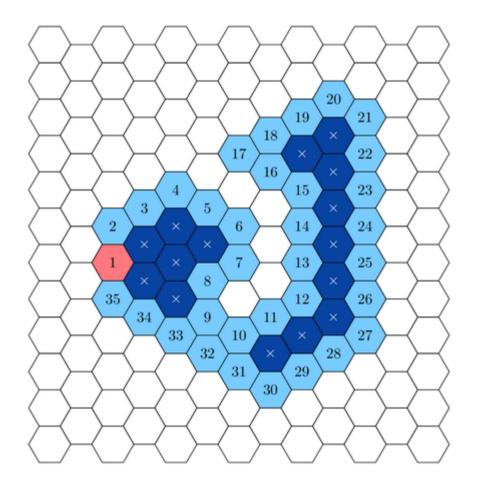

Russian (RUS)

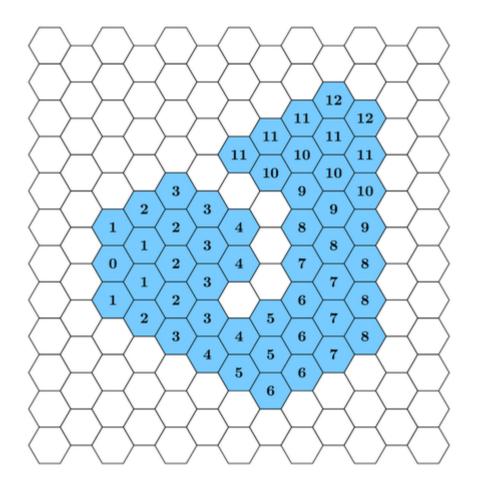
Шестиугольная территория

Пак Денгклек стоит на некоторой клетке бесконечной гексагональной решётки; назовём эту клетку стартовой клеткой. Две клетки в гексагональной решётке считаются соседними, если они граничат по стороне. За один шаг Пак Денгклек может перейти из текущей клетки в одну из соседних с ней клеток, двигаясь по одному из шести направлений. Направления пронумерованы целыми числами от 1 до 6, как показано на иллюстрации.



Пак Денгклек следует по пути, который состоит из последовательности клеток, посещённых за N ходов. i-й ход задаётся направлением D[i] и количеством шагов в этом направлении L[i]. При этом путь имеет следующие свойства:

- Путь является замкнутым, то есть стартовая клетка и конечная клетка пути совпадают.
- Путь является *простым*, то есть каждая клетка, кроме стартовой клетки, будет посещена не более одного раза, а стартовая клетка будет посещена ровно два раза (в начале и в конце пути).
- Путь является *наблюдаемым*, то есть у каждой клетки в пути есть клетка, соседняя с ней, которая не принадлежит пути и не является *внутренней*.
 - \circ Клетка A называется *внутренней*, если она не принадлежит пути и количество клеток, которые можно посетить выходя из этой клетки и не заходя в клетки, принадлежащие пути, конечно.


Ниже приведён пример пути, по которому может следовать Пак Денгклек.

- Клетка с номером 1 (закрашенная красным) является стартовой (и конечной) клеткой.
- Клетки, которые пронумерованы (закрашенные светло-синим) являются клетками в пути, пронумерованными в порядке, в котором они были посещены.
- Клетки, которые помечены крестом (закрашены тёмно-синим) являются внутренними клетками.

Определим *территорию* как множество всех клеток, которые принадлежат пути или являются внутренними. Определим *удалённость* клетки c, принадлежащей территории, как минимальное количество шагов, требуемое для того, чтобы перейти из начальной клетки в клетку c, посещая только клетки, принадлежащие территории. Стоимость клетки, принадлежащей территории, равна $A+d\times B$, где A и B - константы, заданные Паком Денгклеком, а d - удалённость клетки.

На иллюстрации ниже для каждой клетки, принадлежащей территории, указана её удалённость.

Помогите Паку Денгклеку вычислить суммарную стоимость всех клеток в территории, образованной путём из N его ходов. Так как ответ может быть очень большим, выведите остаток от его деления на $10^9 + 7$.

Детали реализации

Ваша задача --- реализовать следующую процедуру:

int draw_territory(int N, int A, int B, int[] D, int[] L)

- ullet N --- количество ходов.
- A, B: заданные Паком Денгклеком константы.
- ullet D: массив длины N, где D[i] --- направление i-го хода.
- ullet L: массив длины N, где L[i] --- количество клеток, на которое происходит передвижение при i-м ходе.
- ullet Процедура должна возвращать остаток от деления суммарной стоимости территории на 10^9+7 .
- Процедура вызывается ровно один раз.

Примеры

Рассмотрим следующий вызов:

```
draw_territory(17, 2, 3,

[1, 2, 3, 4, 5, 4, 3, 2, 1, 6, 2, 3, 4, 5, 6, 6, 1],

[1, 2, 2, 1, 1, 1, 1, 2, 3, 2, 3, 1, 6, 3, 3, 2, 1])
```

Ходы в этом примере соответствуют иллюстрации из условия. Таблица внизу задаёт стоимость каждой клетки из территории.

Расстояние	Количество клеток	Стоимость каждой клетки	Стоимость всех клеток
0	1	2+0 imes 3=2	1 imes 2 = 2
1	4	2+1 imes 3=5	4 imes 5=20
2	5	2+2 imes 3=8	5 imes 8 = 40
3	6	2+3 imes 3=11	$6 \times 11 = 66$
4	4	2+4 imes 3=14	4 imes 14 = 56
5	3	2+5 imes 3=17	$3 \times 17 = 51$
6	4	2+6 imes 3=20	$4 \times 20 = 80$
7	4	2+7 imes 3=23	4 imes23=92
8	5	2+8 imes 3=26	5 imes 26 = 130
9	3	2+9 imes 3=29	3 imes 29 = 87
10	4	2+10 imes 3=32	4 imes32=128
11	5	2+11 imes 3=35	5 imes35=175
12	2	2+12 imes 3=38	2 imes 38 = 76

Суммарная стоимость равна $2+20+40+66+56+51+80+92+130+87+128+175+76=1003. \label{eq:2}$ Таким образом, процедура draw_territory должна возвращать 1003.

Ограничения

- $3 \le N \le 200\,000$
- $0 \le A, B \le 10^9$
- $1 \le D[i] \le 6$ (для всех $0 \le i \le N-1$)
- $1 \leq L[i]$ (для всех $0 \leq i \leq N-1$)
- Сумма элементов массива L не превосходит 10^9 .
- Путь является замкнутым, простым и наблюдаемым.

Подзадачи

- 1. (3 балла) N=3, B=0
- 2. (6 баллов) N=3
- 3. (11 баллов) Сумма всех элементов в L не превосходит 2000.
- 4. (12 баллов) B=0, сумма всех элементов в L не превосходит $200\,000$.
- 5. (15 баллов) B=0
- 6. (19 баллов) Сумма всех элементов в L не превосходит $200\,000$.
- 7. (18 баллов) L[i] = L[i+1] (для всех $0 \leq i \leq N-2$)
- 8. (16 баллов) Без дополнительных ограничений.

Грейдер участника

Выдаваемый участникам грейдер читает входные данные в следующем формате:

- ullet строка $1{:}\ N\ A\ B$
- ullet строка 2+i ($0\leq i\leq N-1$): D[i] L[i]

Грейдер выводит данные в следующем формате:

• строка 1: значение, возвращаемое функцией draw_territory