Road Closures

In the city of Surabaya, there are N junctions, numbered from 0 to $N-1$. These junctions are connected by $N-1$ bidirectional roads, numbered from 0 to $N-2$, such that there is a unique path between any pair of junctions through the roads. Road $i(0 \leq i \leq N-2)$ connects junction $U[i]$ and $V[i]$.

To raise environmental awareness, Pak Dengklek, as the mayor of Surabaya, plans to hold a Car Free Day. To encourage the event, Pak Dengklek will organize road closures. Pak Dengklek will first choose a non-negative integer k, then close some of the roads such that each junction is directly connected to at most k roads that are not closed. The cost to close road i is $W[i]$.

Help Pak Dengklek to find the minimum total cost to close the roads for each possible nonnegative integer $k(0 \leq k \leq N-1)$.

Implementation Details

You should implement the following procedure:

```
int64[] minimum_closure_costs(int N, int[] U, int[] V, int[] W)
```

- N : the number of junctions in Surabaya.
- U and V : arrays of size $N-1$, where junctions $U[i]$ and $V[i]$ are connected by road i.
- W : an array of size $N-1$, where $W[i]$ is the cost to close road i.
- This procedure should return a single array of size N. For each $k(0 \leq k \leq N-1)$, the k-th element is the minimum total cost to close the roads such that each junction is directly connected to at most k roads that are not closed.
- This procedure is called exactly once.

Examples

Example 1

Consider the following call:

```
minimum_closure_costs(5, [0, 0, 0, 2], [1, 2, 3, 4], [1, 4, 3, 2])
```

This means there is a total of 5 junctions and 4 roads connecting the junction pairs (0,1), (0,2), $(0,3)$, and $(2,4)$ with closure costs $1,4,3$, and 2 , respectively.

To obtain the minimum costs:

- if Pak Dengklek chose $k=0$, then all roads should be closed with a total cost of $1+4+3+2=10$;
- if Pak Dengklek chose $k=1$, then road 0 and road 1 should be closed with a total cost of $1+4=5$;
- if Pak Dengklek chose $k=2$, then road 0 should be closed with a total cost of 1 ;
- if Pak Dengklek chose $k=3$ or $k=4$, then no roads need to be closed.

Therefore, the minimum_closure_costs procedure should return $[10,5,1,0,0]$.

Example 2

Consider the following call:

```
minimum_closure_costs(4, [0, 2, 0], [1, 0, 3], [5, 10, 5])
```

This means there is a total of 4 junctions and 3 roads connecting the junction pairs $(0,1),(2,0)$, and $(0,3)$ with the closure costs 5,10 , and 5 respectively.

To obtain the minimum costs:

- if Pak Dengklek chose $k=0$, then all roads should be closed with a total cost of $5+10+5=20 ;$
- if Pak Dengklek chose $k=1$, then road 0 and road 2 should be closed with a total cost of $5+5=10 ;$
- if Pak Dengklek chose $k=2$, then either road 0 or road 2 should be closed with a total cost of 5;
- if Pak Dengklek chose $k=3$, then no roads need to be closed.

Therefore, the minimum_closure_costs procedure should return $[20,10,5,0]$.

Constraints

- $2 \leq N \leq 100000$
- $0 \leq U[i], V[i] \leq N-1$ (for all $0 \leq i \leq N-2$)
- It is possible to travel between any pair of junctions through the roads.
- $1 \leq W[i] \leq 10^{9}$ (for all $0 \leq i \leq N-2$)

Subtasks

1. (5 points) $U[i]=0$ (for all $0 \leq i \leq N-2$)
2. (7 points) $U[i]=i, V[i]=i+1$ (for all $0 \leq i \leq N-2$)
3. (14 points) $N \leq 200$
4. (10 points) $N \leq 2000$
5. (17 points) $W[i]=1$ (for all $0 \leq i \leq N-2$)
6. (25 points) $W[i] \leq 10$ (for all $0 \leq i \leq N-2$)
7. (22 points) No additional constraints.

Sample Grader

The sample grader reads the input in the following format:

- line 1: N
- line $2+i(0 \leq i \leq N-2): U[i] V[i] W[i]$

The sample grader prints a single line containing the array returned by minimum_closure_costs.

