Problem Nice Lines

C header: nice_lines_c.h
C++ header: nice_lines.h

Roxette the pirate princess has arrived to the secret island in the Remeian archipelago. There, a famous treasure, the golden nice lines is rumoured to be buried.
The secret island is a square, 2×10^{12} by 2×10^{12} meters long and tall. Any point on the island is described using Cartesian coordinates, with $(0,0)$ being at the center, and the two axes being parallel to its sides.
There are N golden nice lines buried on the island. The $i^{\text {th }}$ one for $0 \leq i<N$ occupies the set of all real-valued points (x, y) described by the linear equation $y=a_{i} x+b_{i}$.
Roxette can use a special device, called a lineometer. Given any point p on the island, the lineometer will compute the sum of the distances ${ }^{1}$ from point p to each of the N golden nice lines.
Unfortunately, the lineometer has a limited number of uses. Can you help Roxette find the treasure with a small enough number of lineometer uses?

Interaction protocol

The contestant must implement one function:

```
(C) void solve(int subtask_id, int N);
(C++) void solve(int subtask_id, int N);
```

This function will be called exactly once, at the beginning of the interaction. N is the number of golden nice lines hidden on the island.
This function is able to call another function, but no more than $Q_{\max }$ times:

```
(C) long double query(long double x, long double y);
(C++) long double query(long double x, long double y);
```

The contestant must only call this function with arguments such that $-10^{12} \leq x, y \leq 10^{12}$.
It returns the result of the lineometer when applied to a point with Cartesian coordinates (x, y) - i.e. the sum of the distances from point (x, y) to each of the N golden nice lines. Note that the golden nice lines themselves will not be provided, as it is the contestant's objective to find them.
When the contestant finds the N golden nice lines, they must call the function:

```
(C) void the_lines_are(int* a, int* b);
(C++) void the_lines_are(std::vector<int> a, std::vector<int> b);
```

Where $a[i]$ and $b[i]$ must describe the $i^{\text {th }}$ golden nice line, for $0 \leq i<N$. The contestant may return the lines in any order.

Constraints

- $1 \leq N \leq 100$
- $-10000 \leq a_{i}, b_{i} \leq 10000$

[^0]- No two lines are parallel.

Scoring

To compute the score for a test, proceed as follows:

- Let Q be the number of times the query function has been called.
- If $Q>Q_{\text {max }}$, or if the golden nice lines have not been correctly reported, then the score for the test will be 0 .
- If $Q \leq Q_{\text {min }}$, then the score for the test will be 1 .
- Otherwise, the score for the test will be $1-0.7 \cdot \frac{Q-Q_{\text {min }}}{Q_{\text {max }}-Q_{\text {min }}}$.

To compute the score for a subtask, take the minimum score awarded for each of the tests in that subtask and then multiply it by the total number of points for the subtask.

Subtask 1 (11 points)

- $N=1$
- $Q_{\min }=10000, Q_{\max }=10000$

Subtask 2 (13 points)

- $N=2$
- $Q_{\min }=10000, Q_{\max }=10000$

Subtask 3 (7 points)

- $N=3$
- $Q_{\min }=10000, Q_{\max }=10000$

Subtask 4 (19 points)

- $-500 \leq a_{i}, b_{i} \leq 500$
- $Q_{\text {min }}=402, Q_{\max }=10000$

Subtask 5 (23 points)

- $N \leq 30$
- $Q_{\text {min }}=402, Q_{\max }=10000$

Subtask 6 (27 points)

- $Q_{\min }=402, Q_{\max }=10000$

Example

Committee calls	Contestant calls
solve(query (0, 0) returns 0 $/ *$ subtask_id $=* / 1$, $/ *$ N
	query (1, 1) returns 0
	the_lines_are (
	$/ * \mathrm{a}=* /\{1\}$,
	$/ * \mathrm{~b}=* /\{0\})$

[^0]: ${ }^{1}$ The Euclidean distance between a point and a line is the length of the shortest line segment that touches both the line and the point.

