
Problem D. Disk Sort

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

You are given n + 1 rods and 3n disks. Initially, each of the first n rods contains exactly 3 disks. Each of the disks has one of n colors (identified by numbers from 1 to n). Moreover, there are exactly 3 disks of each of the n colors. The n + 1-th rod is empty.

At each step we can select two rods a and b ($a \neq b$) such that a has at least 1 disk and b has at most 2 disks, and move the topmost disk from rod a to the top of rod b. Note that no rod is allowed to contain more than 3 disks at any time.

Your goal is to sort the disks. More specifically, you have to do a number of operations (potentially 0), so that, at the end, each of the first n rods contains exactly 3 disks of the same color, and the n + 1-th rod is empty.

Find out a solution to sort the disks in at most 6n operations. It can be proven that, under this condition, a solution always exists. If there are multiple solutions, any one is accepted.

Input

The first line of the input contains a positive integer n $(1 \le n \le 1000)$. The next 3 lines of the input contain n positive integers $c_{i,j}$ each $(1 \le i \le 3, 1 \le j \le n, 1 \le c_{i,j} \le n)$, the color each of the disks initially placed on the rods. The first of the 3 lines indicates the upper row, the second line indicates the middle row, and the third line indicates the lower row.

Output

The first line of the output must contain a non-negative integer k ($0 \le k \le 6n$), the number of operations. Each of the following k lines should contain two **distinct** numbers a_i, b_i ($1 \le a_i, b_i \le n + 1$, for all $1 \le i \le k$), representing the *i*-th operation (as described in the statement).

Examples

standard input	standard output
4	8
2 3 1 4	3 5
2 1 1 4	3 5
2 3 3 4	2 3
	2 5
	2 3
	5 2
	5 2
	5 2
2	0
1 2	
1 2	
1 2	