Problem I. Modulo Permutations

Input file:
Output file
Time limit:
Memory limit:
standard input
standard output
1 second
256 megabytes

Given a natural number n, count the number of permutations $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ of the numbers from 1 to n, such that for each $i(1 \leq i \leq n)$, the following property holds: $p_{i} \bmod p_{i+1} \leq 2$, where $p_{n+1}=p_{1}$.
As this number can be very big, output it modulo $10^{9}+7$.

Input

The only line of the input contains the integer $n\left(1 \leq n \leq 10^{6}\right)$.

Output

Output a single integer - the number of the permutations satisfying the condition from the statement, modulo $10^{9}+7$.

Examples

standard input	standard output
1	1
2	2
3	6
4	16
5	40

Note

For example, for $n=4$ you should count the permutation $[4,2,3,1]$, as $4 \bmod 2=0 \leq 2,2 \bmod 3=2 \leq 2$, $3 \bmod 1=0 \leq 2,1 \bmod 4=1 \leq 2$. However, you shouldn't count the permutation $[3,4,1,2$], as $3 \bmod 4=3>2$ which violates the condition from the statement.

