
XXI Open Cup named after E.V. Pankratiev
Stage 17: Grand Prix of Southern Europe, Sunday, May 23, 2021

Problem M. Mistake
Input file: standard input

Output file: standard output

Time limit: 3 seconds
Memory limit: 256 megabytes

As an apprentice algorithms enthusiast, it is not a great surprise that Mike struggles to cope with overly
complex systems. Unfortunately, this turned out to be a big problem in the company he is currently
interning.

Mike’s assigned project involves tinkering with the company’s Intelligent Cluster for Parallel Computa-
tion. This is just a fancy name; in reality, the system is just a simple job scheduler, handling a total of
𝑛 jobs. Some jobs might depend on successful execution of other jobs before being able to be executed.
There are 𝑚 such dependencies in total.

It is guaranteed that there are no (direct or indirect) circular dependencies between jobs.

When a run is started, the systems intelligently picks an order to execute these jobs so that all the
dependencies are met (the order may change between different runs). After picking a valid ordering, it
starts executing each of the 𝑛 jobs in that order. When the system starts executing a job, it prints the
id of the job to a log file.

Unfortunately, today was Mike’s first day interning at the company and he wasn’t very cautious. Conse-
quently, he accidentally ran the system 𝑘 times in parallel. The system started erratically launching jobs
and printing to the log file. Now the log file contains 𝑛 · 𝑘 ids of all the jobs that were executed. The job
ids from the same run have been printed in the order they were executed, but the outputs from different
runs may appear interweaved arbitrarily.

Your task is to figure out which jobs were executed in each of the 𝑘 runs from the information inside the
log file.

Input

The first line of the input will contain three integers 𝑛, 𝑘,𝑚 (1 ≤ 𝑛, 𝑘 ≤ 500 000, 0 ≤ 𝑚 ≤ 250 000,
𝑛 · 𝑘 ≤ 500 000), the number of jobs in the system, the number of runs Mike had triggered, and the
number of dependencies.

The following 𝑚 lines will contain a pair 𝑎𝑖, 𝑏𝑖 (1 ≤ 𝑎𝑖, 𝑏𝑖 ≤ 𝑛, 𝑎𝑖 ̸= 𝑏𝑖, for all 1 ≤ 𝑖 ≤ 𝑚) describing a
dependency of kind: “job 𝑎𝑖 must be executed before job 𝑏𝑖”.

Finally, the last line of the input contains 𝑛 · 𝑘 integers 𝑐𝑖 (1 ≤ 𝑐𝑖 ≤ 𝑛, for all 1 ≤ 𝑖 ≤ 𝑛 · 𝑘), the job ids
that have been printed in the log file, in order.

Output

Output a single line consisting of 𝑛·𝑘 integers 𝑟𝑖 (1 ≤ 𝑟𝑖 ≤ 𝑘, for all 1 ≤ 𝑖 ≤ 𝑛·𝑘), the run id corresponding
to each of the jobs in the log file. More specifically, 𝑟𝑖 should be the run id corresponding to the 𝑖-th job,
as it appears in the log file.

If multiple solutions are possible, any one is accepted. It is guaranteed that the input data is valid and
that a solution always exists.

Example

standard input standard output

3 3 2

1 2

1 3

1 1 2 3 3 2 1 2 3

1 2 2 1 2 1 3 3 3

Page 16 of 16


