Problem F. Fiber Shape

Time limit: $\quad 3$ seconds
Memory limit: $\quad 512$ megabytes
Imagine a board with n pins put into it, the i-th pin is located at $\left(x_{i}, y_{i}\right)$. For simplicity, we will restrict the problem to the case where the pins are placed in vertices of a convex polygon.
Then, take a non-stretchable string of length l, and put it around all the pins. Place a pencil inside the string and draw a curve around the pins, trying to pull the string in every possible direction. The picture below shows an example of a string tied around the pins and pulled by a pencil (a point P).

Your task is to find an area inside this curve. Formally, for a given convex polygon S and a length l let's define a fiber shape $F(S, l)$ as a set of points t such that the perimeter of the convex hull of $S \cup\{t\}$ does not exceed l. Find an area of $F(S, l)$.

Input

The first line contains two integers n and $l\left(3 \leq n \leq 10^{4} ; 1 \leq l \leq 8 \cdot 10^{5}\right)$ - the number of vertices of the polygon S and the length of the string. Next n lines contain integers x_{i} and $y_{i}\left(-10^{5} \leq x_{i}, y_{i} \leq 10^{5}\right)-$ coordinates of polygon's vertices in counterclockwise order. All internal angles of the polygon are strictly less than π. The length l exceeds the perimeter of the polygon by at least 10^{-3}.

Output

Output a single floating-point number - the area of the fiber shape $F(S, l)$. Your answer will be considered correct if its absolute or relative error doesn't exceed 10^{-6}.

Examples

	standard input	standard output
3	4	3.012712585980357
0	0	
1	0	
0	1	5.682061989789656
4	5	
0	0	
1	0	
1	1	
0	1	
5	17	
0	0	
2	-1	
3	0	
4	3	-1

Note

The following pictures illustrate the example tests.

