Problem H. Hard Optimization

Time limit:	3 seconds
Memory limit:	512 megabytes

You are given a set of n segments on a line $[L_i; R_i]$. All 2n segment endpoints are pairwise distinct integers.

The set is laminar — any two segments are either disjoint or one of them contains the other.

Choose a non-empty subsegment $[l_i, r_i]$ with integer endpoints in each segment $(L_i \leq l_i < r_i \leq R_i)$ in such a way that no two subsegments intersect (they are allowed to have common endpoints though) and the sum of their lengths $(\sum_{i=1}^{n} r_i - l_i)$ is maximized.

Input

The first line contains a single integer n $(1 \le n \le 2 \cdot 10^3)$ — the number of segments.

The *i*-th of the next *n* lines contains two integers L_i and R_i $(0 \le L_i < R_i \le 10^9)$ — the endpoints of the *i*-th segment.

All the given 2n segment endpoints are distinct. The set of segments is laminar.

Output

On the first line, output the maximum possible sum of subsegment lengths.

On the *i*-th of the next n lines, output two integers l_i and r_i ($L_i \leq l_i < r_i \leq R_i$), denoting the chosen subsegment of the *i*-th segment.

Example

standard input	standard output
4	7
1 10	3 6
2 3	2 3
59	79
6 7	6 7

Note

The example input and the example output are illustrated below.

