Problem I
 Integral Pyramid

Pascal's triangle is a marvel of the combinatorical world, and what's more you can easily build one for yourself at home.

The lowest row has n numbers. The next row is staggered and has $n-1$ numbers, where the i th is the sum of the i th and the $i+1$ th on the previous row.

You can choose any positive integers for the lowest row, but the single cell on the top row needs to be equal to a given x. Is this possible?

Input

- The only line contains the number of rows, $n(1 \leq n \leq 20)$, and the value needed at the top, $x\left(1 \leq x \leq 10^{9}\right)$.

Output

If a pyramid can be constructed, output all of the numbers on each row, starting from the top. Every number must be greater than or equal to 1 .

Otherwise, output impossible.

Sample Input 1

Sample Output 1

315	15
	8 7 3 5

Sample Input 2

Sample Output 2

6789	

```
78
394 395
209185 210
117 92 93 117
70 47 45 48 69
45 25 22 23 25 44
```


Sample Input 3

Sample Output 3

This page is intentionally left (almost) blank.

