Problem B. Bunch of Paper

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

There are N sheets of paper, enumerated by sequential integers from 1 to N. Each sheet has K integers written on it, so i-th sheet contains the integers $v_{i, 1}, v_{i, 2}, \ldots, v_{i, K}$.

Then we choose one integer from each sheet and create the sequence a_{i}, where i-th integer is chosen from i-th sheet of paper. There are K^{N} ways to make such a sequence. How many of them are non-decreasing? A sequence is non-decreasing if $a_{i} \leq a_{i+1}$ for all $1 \leq i \leq N-1$.
The answer may be too large, so print it modulo $10^{9}+7$.

Input

The first line of the input contains two integers N and $K\left(1 \leq N \leq 100,1 \leq K \leq 10^{4}\right)$. The i-th of the following N lines contains K integers $v_{i, 1}, v_{i, 2}, \ldots, v_{i, K}\left(1 \leq v_{i, 1}<v_{i, 2}<\ldots<v_{i, K} \leq 10^{9}\right)$.

Output

Print the number of non-decreasing sequences, modulo $10^{9}+7$.

Examples

	standard input	standard output	
2	2	2	
2	4		
1	5	0	
2	3	6	
4	5	6	3

