

Problem E. Efficient Partitioning

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Let a partition of [0, N) be an integer sequence $S = (s_0, \ldots, s_r)$ that satisfies the following three conditions:

- $s_0 = 0$,
- $s_r = N$,
- $s_i < s_{i+1} \ (0 \le i < r).$

That is, for each i, $[s_i, s_i + 1)$ represents a continuous interval, and [0, N) is the union of these r intervals. Given are three sequences of length N consisting of integers between -10^9 and 10^9 : $A(a_0, \ldots, a_{N-1})$, $B(b_0, \ldots, b_{N-1})$, $C(c_0, \ldots, c_{N-1})$.

Let the score of partition S be f(S) defined as follows:

$$f(S) = \min_{0 \le i < r} \left\{ b_{s_i} + c_{s_{i+1}-1} + \sum_{s_i \le j < s_{i+1}} a_j \right\}$$

Find the maximum value of f over all possible partitions S.

Input

The first line of input contains one integer N $(1 \le N \le 2 \cdot 10^5)$. The second line contains n integers: *i*-th of them denotes a_i . The third and fourth lines describe the sequences b and c in the same format $(-10^9 \le a_i, b_i, c_i \le 10^9)$.

Output

Print one integer: the maximum score over all possible partitions.

Examples

standard input	standard output
2	1
1 -1	
-1 4	
1 -2	
1	300000000
100000000	
100000000	
100000000	