Problem G. Generate the Sequences

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 mebibytes

Consider S, the sequence of integer sequences. Initially, $S_{0}=(1)$. After that, we construct $S_{1}, S_{2}, \ldots, S_{n}$ as follows.
Let $\left|S_{i}\right|$ be the length of the sequence S_{i}, and $s_{i, j}$ be the j-th element of S_{i}. Then S_{i+1} will have length $\left|S_{i}\right|+1$ and can be obtained from $\left|S_{i}\right|$ using one of the following two operations:

- Write 1 or the given integer m as the element with number $\left|S_{i}\right|+1$ of the new sequence.
- Select an index $j\left(1 \leq j<\left|S_{i}\right|\right)$, choose integer x such that $s_{i, j}<x<s_{i, j+1}$ or $s_{i, j}>x>s_{i, j+1}$, and place it between $s_{i, j}$ and $s_{i, j+1}$, shifting the right part's indices by 1 .

Given n and m, find the number of different ordered sets of sequences $S_{1} \ldots S_{n}$. Two sets are considered different if, at least for one i from 1 to n, the sequences S_{i} in those sets differ. As the answer may be too large, print it modulo 998244353.

Input

The input consists of one line containing two integers n and $m\left(1 \leq n \leq 3000,2 \leq m \leq 10^{8}\right)$.

Output

Print the number of different sequences S modulo 998244353 .

Examples

standard input	standard output
23	5
102452689658	654836147

Note

Here are the possible sequences in the first example:

- $S_{1}=(1,3)$ (first operation), then $S_{2}=(1,2,3)$ (second operation);
- $S_{1}=(1,1)$ (first operation), then $S_{2}=(1,1,3)$ (first operation);
- $S_{1}=(1,1)$ (first operation), then $S_{2}=(1,1,1)$ (first operation);
- $S_{1}=(1,3)$ (first operation), then $S_{2}=(1,3,3)$ (first operation);
- $S_{1}=(1,3)$ (first operation), then $S_{2}=(1,3,1)$ (first operation).

Therefore, the answer is 5 .

