Problem K. Kingdoms and Quarantine

Input file:	standard input
Output file:	standard output
Time limit:	8 seconds
Memory limit:	512 mebibytes

There are two kingdoms A (with N_{1} cities) and B (with N_{2} cities), and M bidirectional roads, each connecting a city from A and a city from B, such that there is no more than one road connecting any pair of cities.
The cities in the kingdom A are enumerated from 1 to N_{1}, and the cities in the kingdom B are enumerated from $N_{1}+1$ to $N_{1}+N_{2}$. The roads are enumerated from 1 to M; the road i connects two cities a_{i} and b_{i}, where a_{i} and b_{i} satisfy $1 \leq a_{i} \leq N_{1}$ and $N_{1}+1 \leq b_{i} \leq N_{1}+N_{2}$.
Once upon a time, a dangerous virus appeared in one kingdom, so the Kings decided to close some roads.
Let D_{j} be the initial number of roads connecting the city j with other cities, and d_{j} be the number of currently active (not closed) roads connecting the city j with other cities.

The road x can be closed if and only if following conditions are met before closing the road:

- It was not closed before.
- The numbers $d_{a_{x}}$ and $D_{b_{x}}$ must have the same parity (both even or both odd).
- The numbers $d_{b_{x}}$ and $D_{a_{x}}$ must have the same parity (both even or both odd).

Find the maximum number of roads that can be closed, and then find a sequence of road closing operations such that this maximum is achieved.

Input

The first line of input contains three integers, N_{1}, N_{2}, and M : the number of cities in kingdom A, the number of cities in kingdom B, and the number of roads, respectively $\left(1 \leq N_{1}, N_{2}, M \leq 3000\right.$, $1 \leq M \leq N_{1} \cdot N_{2}$.

The i-th of the following M lines describes the road i and contains two integers a_{i} and $b_{i}\left(1 \leq a_{i} \leq N_{1}\right.$, $N_{1}+1 \leq b_{i} \leq N_{1}+N_{2}$): the numbers of cities connected by that road. You may assume that, for different i and $j, a_{i} \neq a_{j}$ or $b_{i} \neq b_{j}$.

Output

On the first line, print the integer K : the maximum number of roads that can be closed. On the second line, print K integers $r_{i}\left(1 \leq r_{i} \leq M\right)$: the numbers of roads to be closed, in the order of closing them. If there are several optimal answers, print any one of them.

Examples

standard input	standard output
$\begin{array}{lll} 2 & 3 & 5 \\ 1 & 3 & \\ 1 & 4 \\ 1 & 5 \\ 2 & 4 \\ 2 & 5 \end{array}$	$\begin{array}{lll} \hline & & \\ 1 & 4 & 2 \end{array}$
$\begin{array}{lll} 1 & 2 & 2 \\ 1 & 2 & \\ 1 & 3 & \end{array}$	0
$\begin{array}{lll} \hline 4 & 3 & 7 \\ 1 & 5 & \\ 2 & 5 & \\ 2 & 6 & \\ 2 & 7 & \\ 3 & 6 & \\ 4 & 5 & \\ 4 & 7 \end{array}$	$\begin{array}{lllll} 5 & & & & \\ 1 & 7 & 6 & 2 & 4 \end{array}$

Note

In the first example, $D_{1}=3, D_{2}=2, D_{3}=1, D_{4}=2, D_{5}=2$.
Initially, $d_{1}=3, d_{2}=2, d_{3}=1, d_{4}=2, d_{5}=2$, so we can close the following roads:

- Road 1 connecting city 1 and city 3 .
- Road 4 connecting city 2 and city 4 .
- Road 5 connecting city 2 and city 5 .

Let us close road 1 , then
$d_{1}=2, d_{2}=2, d_{3}=0, d_{4}=2, d_{5}=2$.
After that, the roads that can be closed are the following:

- Road 4 connecting city 2 and city 4 .
- Road 5 connecting city 2 and city 5 .

Let us close road 4 , then
$d_{1}=2, d_{2}=1, d_{3}=0, d_{4}=1, d_{5}=2$.
Now, we can close only road 2 , connecting city 1 and city 4 .
After that, $d_{1}=1, d_{2}=1, d_{3}=0, d_{4}=0, d_{5}=2$.
It can be shown that it is impossible to close more than three roads, so the answer is 3 .

