Problem A. AND Permutation

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	1024 mebibytes

You are given a sequence of n distinct nonnegative integers $a_{1}, a_{2}, \ldots, a_{n}$.
For the given sequence, it is guaranteed that for all nonnegative numbers x, if there is some i such that $a_{i} \& x=x$, then there is a j such that $a_{j}=x$. Here, \& refers to the bitwise AND operator.
Find a permutation $b_{1}, b_{2}, \ldots, b_{n}$ of $a_{1}, a_{2}, \ldots, a_{n}$ such that $b_{i} \& a_{i}=0$ for all i. If there are multiple solutions, find any such permutation. It is guaranteed that a solution always exists.

Input

The first line of input contains an integer $n\left(1 \leq n<2^{18}\right)$, which is the number of integers in the permutation.

Each of the next n lines contains an integer $a_{i}\left(0 \leq a_{i}<2^{60}\right)$, which is the input sequence, in order of i. All of the a_{i} 's are guaranteed to be distinct. For all nonnegative numbers x, if there is some i such that $a_{i} \& x=x$, then there is a j such that $a_{j}=x$.

Output

Output n lines, each containing a single integer, which are the b_{i} 's, in order of i.

Example

	standard input	
6	4	standard output
0	6	
1	0	
4	2	
5	5	
2	1	

