

Problem A. AND Permutation

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	1024 mebibytes

You are given a sequence of n distinct nonnegative integers a_1, a_2, \ldots, a_n .

For the given sequence, it is guaranteed that for all nonnegative numbers x, if there is some i such that $a_i \& x = x$, then there is a j such that $a_j = x$. Here, & refers to the bitwise AND operator.

Find a permutation b_1, b_2, \ldots, b_n of a_1, a_2, \ldots, a_n such that $b_i \& a_i = 0$ for all *i*. If there are multiple solutions, find any such permutation. It is guaranteed that a solution always exists.

Input

The first line of input contains an integer $n \ (1 \le n < 2^{18})$, which is the number of integers in the permutation.

Each of the next n lines contains an integer a_i $(0 \le a_i < 2^{60})$, which is the input sequence, in order of *i*. All of the a_i 's are guaranteed to be distinct. For all nonnegative numbers x, if there is some *i* such that $a_i \& x = x$, then there is a *j* such that $a_j = x$.

Output

Output n lines, each containing a single integer, which are the b_i 's, in order of i.

Example

standard input	standard output
6	4
0	6
1	0
4	2
5	5
2	1
6	