Problem J
 Cover the Polygon with Your Disk

Input: Standard Input

Time Limit: 5 seconds

A convex polygon is drawn on a flat paper sheet. You are trying to place a disk in your hands to cover as large area of the polygon as possible. In other words, the intersection area of the polygon and the disk should be maximized.

Input

The input consists of a single test case, formatted as follows. All input items are integers.

$$
\begin{aligned}
& n r \\
& x_{1} y_{1} \\
& \vdots \\
& x_{n} y_{n}
\end{aligned}
$$

n is the number of vertices of the polygon $(3 \leq n \leq 10) . r$ is the radius of the disk $(1 \leq r \leq 100)$. x_{i} and y_{i} give the coordinate values of the i-th vertex of the polygon $(1 \leq i \leq n)$. Coordinate values satisfy $0 \leq x_{i} \leq 100$ and $0 \leq y_{i} \leq 100$.

The vertices are given in counterclockwise order. As stated above, the given polygon is convex. In other words, interior angles at all of its vertices are less than 180°. Note that the border of a convex polygon never crosses or touches itself.

Output

Output the largest possible intersection area of the polygon and the disk. The answer should not have an error greater than $0.0001\left(10^{-4}\right)$.

\left.| Sample Input 1 | Sample Output 1 |
| :--- | :--- |
| 4 | 4 |
| 0 | 0 |
| 6 | 0 |
| 6 | 6 |
| 0 | 6 |$\right] 35.759506$

3	1	2.113100
0	0	
2	1	
1	3	

Sample Input 3
Sample Output 3

3	1	0.019798
0	0	
100	1	
99	1	

Sample Input 4
Sample Output 4

4	1	3.137569
0	0	10
100	10	
100	12	
0	1	

Sample Input 5
Sample Output 5

10	10	177.728187
0	0	
10	0	
20	1	
30	3	
40	6	
50	10	
60	15	
70	21	
80	28	
90	36	

Sample Input 6
Sample Output 6
1049
500
7910
9632
9668
7990
50100
2190
468
432
2110
7181.603297

