Problem F. Mountainous Palindromic Subarray

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 mebibytes

An array is Mountainous if it is strictly increasing, then strictly decreasing. Note that Mountainous arrays must therefore be of length three or greater.
A Subarray is defined as an array that can be attained by deleting some prefix and suffix (possibly empty) from the original array.

An array or subarray is a Palindrome if it is the same sequence forwards and backward.
Given an array of integers, compute the length of the longest Subarray that is both Mountainous and a Palindrome.

Input

The first line of input contains an integer $n\left(1 \leq n \leq 10^{6}\right)$, which is the number of integers in the array.
Each of the next n lines contains a single integer $x\left(1 \leq x \leq 10^{9}\right)$. These values form the array. They are given in order.

Output

Output a single integer, which is the length of the longest Mountainous Palindromic Subarray, or -1 of no such array exists.

Examples

	standard input
8	5
2	
1	
2	
3	
2	
1	
7	
8	
5	-1
2	
5	
8	
7	
2	

