Problem G. Permutation CFG

Input file:	standard input
Output file:	standard output
Time limit:	7 seconds
Memory limit:	1024 mebibytes

Consider a permutation of the integers 1 to n. Now, consider each number 1 through n to be a nonterminal in a Context-Free Grammar (CFG). Each number k expands a list of the integers from 1 to k in the order of the permutation. For example, if $n=4$ and the permutation is 1432 :

```
1\Longrightarrow1
2\Longrightarrow12
3\Longrightarrow132
4\Longrightarrow1432
```

Now, consider a process of starting with n, and at each step, applying these rules to create a new list of integers. In the above example, at the first step:

$$
\overbrace{1432}^{4}
$$

At the second step:

At the third step:

Given a permutation, a number of steps, and a list of queries asking for the number of occurrences of a particular integer in a prefix of the list created by the process, answer all of the queries.

Input

The first line of input contains three integers, $n\left(2 \leq n \leq 10^{5}\right), s(1 \leq s \leq 5)$ and $q\left(1 \leq q \leq 2 \cdot 10^{5}\right)$, where n is the size of the permutation, s is the number of steps to apply the process, and q is the number of queries.

Each of the next n lines contains a single integer $p(1 \leq p \leq n)$. This is the permutation, in order. All of the values of p will be distinct.

Each of the next q lines contains two integers $k(1 \leq k \leq n)$ and $a\left(1 \leq a \leq 10^{9}\right.$, a will not exceed the length of the final list). This is a query for the number of occurrences of the integer k in the first a elements of the list created by the process.

Output

Output q lines, each with a single integer, which are the answers to the queries in the order that they appear in the input.

Example

	standard input		standard output
4	3	6	3
1		6	
4		0	
3	2		
2	8		
1	6		
2	20		
4	1		
3	5		
2	9	16	

