Problem B. Bruteforce

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	512 mebibytes

You are given fixed integers k and w.
For an array a of length n, let us define its weight in the following way:

- Let b be the array a sorted in non-descending order.
- The weight of a is then defined as $\sum_{i=1}^{n}\left\lfloor\frac{b_{i} \cdot i^{k}}{w}\right\rfloor$.

Here, $\lfloor x\rfloor$ is the largest integer not exceeding x.
For example, if $k=3$ and $w=3$, then the weight of $a=[3,2,2]$ is equal to:
$\left\lfloor\frac{2 \cdot 1^{2}}{3}\right\rfloor+\left\lfloor\frac{2 \cdot 2^{2}}{3}\right\rfloor+\left\lfloor\frac{3 \cdot 3^{2}}{3}\right\rfloor=0+2+9=11$.
You are given an initial array a, and will be given q queries. Each query changes one element of array a. After each query, you should output the new weight of the array. Since array weights can be really large, you should output them modulo 998244353 .
Note that the changes persist between queries. For example, the second query is applied to the array which is already changed by the first query.

Input

The first line contains three integers $n, k, w\left(1 \leq n \leq 10^{5}, 1 \leq k \leq 5,1 \leq w \leq 5\right)$: the length of the array and the parameters from the statement.
The second line contains n integers $a_{i}\left(0 \leq a_{i} \leq 10^{5}\right)$: the elements of the original array.
The third line contains a single integer $q\left(1 \leq q \leq 10^{5}\right)$: the number of queries.
Each of the next q lines contains two integers, pos and $x\left(1 \leq p o s \leq n, 0 \leq x \leq 10^{5}\right)$. This describes a query that changes $a_{\text {pos }}$ into x.

Output

Output q integers: the weights of the array after each change, modulo 998244353 .

Examples

	standard input		standard output	
3	1	1	36	
2	2	8	30	
2				
2	5			
3	6	75		
4	2	2	80	
1	3	3	7	103
4		108		
1	1			
2	4			
3	8			
4	8			

