

41st Petrozavodsk Programming Camp, Summer 2021

Day 3: IQ test by kefaa2, antontrygubO_o, and gepardo, Wednesday, August 25, 2021

Problem F. Fancy Formulas

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 mebibytes

You are given a prime p and a pair of integers (a, b) such that **their sum is not divisible by** p. In one operation, you can do one of the following:

- Replace (a, b) with $(2a \mod p, (b + p a) \mod p)$
- Replace (a, b) with $((a + p b) \mod p, 2b \mod p)$

You have to answer q queries. In the i-th query, find the smallest number of operations needed to transform the pair (a_i, b_i) into the pair (c_i, d_i) , or determine that it is impossible.

Note that the order of numbers matters. For example, for p = 3, the distance between (1, 2) and (2, 1) is 1, not 0.

Input

The first line contains two integers p and q ($2 \le p \le 10^9 + 7$, p is prime, $1 \le q \le 10^5$): the prime and the number of queries to answer.

The *i*-th of the next q lines contains four integers a_i , b_i , c_i , d_i ($0 \le a_i, b_i, c_i, d_i < p$, and $a_i + b_i$ is not divisible by p).

Output

For each query, if it is impossible to transform (a_i, b_i) into (c_i, d_i) , output -1. Otherwise, output the smallest number of operations required to achieve this goal.

Example

standard input	standard output
5 10	2
2 1 3 0	1
2 1 4 4	2
1 3 4 0	-1
0 2 0 4	-1
3 3 1 2	0
0 1 0 1	0
0 3 0 3	0
0 1 0 1	1
1 2 4 4	-1
1 0 1 1	