Problem F. Fancy Formulas

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

You are given a prime p and a pair of integers (a, b) such that their sum is not divisible by p. In one operation, you can do one of the following:

- Replace (a, b) with $(2 a \bmod p,(b+p-a) \bmod p)$
- Replace (a, b) with $((a+p-b) \bmod p, 2 b \bmod p)$

You have to answer q queries. In the i-th query, find the smallest number of operations needed to transform the pair $\left(a_{i}, b_{i}\right)$ into the pair $\left(c_{i}, d_{i}\right)$, or determine that it is impossible.
Note that the order of numbers matters. For example, for $p=3$, the distance between $(1,2)$ and $(2,1)$ is 1 , not 0 .

Input

The first line contains two integers p and $q\left(2 \leq p \leq 10^{9}+7, p\right.$ is prime, $\left.1 \leq q \leq 10^{5}\right)$: the prime and the number of queries to answer.
The i-th of the next q lines contains four integers $a_{i}, b_{i}, c_{i}, d_{i}\left(0 \leq a_{i}, b_{i}, c_{i}, d_{i}<p\right.$, and $a_{i}+b_{i}$ is not divisible by p).

Output

For each query, if it is impossible to transform $\left(a_{i}, b_{i}\right)$ into $\left(c_{i}, d_{i}\right)$, output -1 . Otherwise, output the smallest number of operations required to achieve this goal.

Example

			standard input		standard output
	10		2		
2	1	3	0		1
2	1	4	4		-1
1	3	4	0		-1
0	2	0	4		0
3	3	1	2		0
0	1	0	1		0
0	3	0	3		1
0	1	0	1		
1	2	4	4		
1	0	1	1		

