

Problem H. Hamiltonian

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

You are given a positive integer $K \leq 60$. Construct a graph with at most 20 vertices with the following property: there are exactly K unordered pairs of vertices (u, v) such that there is a Hamiltonian path between u and v in this graph.

It can be shown that, under these constraints, the solution always exists.

Recall that a Hamiltonian path is a path between two vertices of a graph that visits each vertex exactly once.

Input

The only line of the input contains a single integer K $(1 \le K \le 60)$.

Output

On the first line, output two integers n and m $(2 \le n \le 20, 0 \le m \le \frac{n(n-1)}{2})$, the number of vertices and the number of edges in your graph respectively.

In each of the next m lines, output two integers u and v $(1 \le u, v \le n, u \ne v)$, representing the edge (u, v) of your graph. All edges have to be distinct.

Examples

standard input	standard output
1	2 1
	1 2
2	4 4
	1 2
	1 3
	2 3
	3 4
3	3 3
	1 2
	2 3
	3 1
	1