Problem H. Hamiltonian

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

You are given a positive integer $K \leq 60$. Construct a graph with at most 20 vertices with the following property: there are exactly K unordered pairs of vertices (u, v) such that there is a Hamiltonian path between u and v in this graph.
It can be shown that, under these constraints, the solution always exists.
Recall that a Hamiltonian path is a path between two vertices of a graph that visits each vertex exactly once.

Input

The only line of the input contains a single integer $K(1 \leq K \leq 60)$.

Output

On the first line, output two integers n and $m\left(2 \leq n \leq 20,0 \leq m \leq \frac{n(n-1)}{2}\right)$, the number of vertices and the number of edges in your graph respectively.
In each of the next m lines, output two integers u and $v(1 \leq u, v \leq n, u \neq v)$, representing the edge (u, v) of your graph. All edges have to be distinct.

Examples

standard input		standard output	
1	2	1	
	1	2	
2	4	4	
	1	2	
1	3		
	2	3	
	3	4	
3	3	3	
	1	2	
	2	3	
	3	1	

