41st Petrozavodsk Programming Camp, Summer 2021

Day 3: IQ test by kefaa2, antontrygubO o, and gepardo, Wednesday, August 25, 2021

Problem I. Intellectual Implementation

Input file: standard input
Output file: standard output

Time limit: 6 seconds Memory limit: 512 mebibytes

There are n rectangles on the coordinate plane, with sides parallel to the coordinate axis. The i-th rectangle covers all points (x, y) with $l_i \le x \le r_i$ and $d_i \le y \le u_i$.

For simplicity, for every $i \neq j$, we have $l_i \neq l_j$, $r_i \neq r_j$, $l_i \neq r_j$, $d_i \neq d_j$, $u_i \neq u_j$, $d_i \neq u_j$.

Count the number of triples (i, j, k) with $1 \le i < j < k \le n$ for which i-th, j-th, and k-th rectangles are pairwise disjoint (every pair of them has no common points).

Input

The first line of the input contains a single integer n ($1 \le n \le 2 \cdot 10^5$), the number of rectangles.

The *i*-th of the next *n* lines contains four integers describing the *i*-th rectangle: l_i , r_i , d_i , u_i $(-10^9 \le l_i < r_i \le 10^9, -10^9 \le d_i < u_i \le 10^9)$.

It is guaranteed that, for every $i \neq j$, we have $l_i \neq l_j$, $r_i \neq r_j$, $l_i \neq r_j$, $d_i \neq d_j$, $u_i \neq u_j$, $d_i \neq u_j$.

Output

Output the number of triples (i, j, k) with $1 \le i < j < k \le n$ for which i-th, j-th, and k-th rectangles are pairwise disjoint.

Examples

standard output
3
0