Problem M. Math

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

You are given an array a of n distinct positive integers. Find the number of pairs (i, j) with $1 \leq i, j \leq n$ for which the number $a_{i}^{2}+a_{j}$ is a square of an integer.

Input

The first line of the input contains a single integer $n\left(1 \leq n \leq 10^{6}\right)$, the size of the array.
The second line of the input contains n distinct positive integers $a_{1}, \ldots, a_{n}\left(1 \leq a_{i} \leq 10^{6}\right)$.

Output

Output a single integer: the answer to the problem.

Example

			standard input		standard output	
5		3	4	5		2

Note

In the example, there are two such pairs, corresponding to $1^{2}+3=4=2^{2}$ and $2^{2}+5=9=3^{2}$.

