Problem A. Counting Pairs

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	256 mebibytes

You are given an undirected graph G consisting of N vertices, numbered from 1 to N, and M edges.
Consider a pair of vertices (a, b), where $a<b$. Let the incidence of (a, b) be the total number of edges with at least one of their endpoints being a or b.

You have to answer Q queries. Each query is given as an integer k, and asks how many pairs of vertices (a, b) are there in G such that $a<b$ and the incidence of (a, b) is strictly greater than k.

Input

The first line of input contains two integers N and M, the number of vertices and the number of edges $\left(1 \leq N, M \leq 10^{6}\right)$.
Then M lines follow. The i-th of them contains two integers x_{i} and y_{i}, denoting the endpoints of the i-th edge $\left(1 \leq x_{i}, y_{i} \leq N\right)$. There may be self-loops or parallel edges.
The next line of input contains one integer Q, the number of queries $\left(1 \leq Q \leq 10^{6}\right)$.
Then Q lines follow. The i-th of them contains an integer k_{i}, denoting the i-th query $\left(1 \leq k_{i} \leq 10^{6}\right)$.

Output

For each query, print a single line with a single integer: the answer to the query.

Example

	standard input	
4	5	6
1	2	
2	4	5
1	3	
2	3	
2	1	
2		
2		
3		

