

Problem A. Counting Pairs

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	256 mebibytes

You are given an undirected graph G consisting of N vertices, numbered from 1 to N, and M edges.

Consider a pair of vertices (a, b), where a < b. Let the *incidence* of (a, b) be the total number of edges with at least one of their endpoints being a or b.

You have to answer Q queries. Each query is given as an integer k, and asks how many pairs of vertices (a, b) are there in G such that a < b and the incidence of (a, b) is strictly greater than k.

Input

The first line of input contains two integers N and M, the number of vertices and the number of edges $(1 \le N, M \le 10^6)$.

Then M lines follow. The *i*-th of them contains two integers x_i and y_i , denoting the endpoints of the *i*-th edge $(1 \le x_i, y_i \le N)$. There may be self-loops or parallel edges.

The next line of input contains one integer Q, the number of queries $(1 \le Q \le 10^6)$.

Then Q lines follow. The *i*-th of them contains an integer k_i , denoting the *i*-th query $(1 \le k_i \le 10^6)$.

Output

For each query, print a single line with a single integer: the answer to the query.

Example

standard input	standard output
4 5	6
1 2	5
2 4	
1 3	
2 3	
2 1	
2	
2	
3	