Problem B. Cactus

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

A cactus is a simple undirected connected graph in which every edge belongs to at most one simple cycle.
Now, there is a cactus accepting the following two operations:

1. Select a vertex with an odd degree in the graph, and remove all edges connected to it.
2. Make a copy of the current graph, and then draw additional edges between the corresponding vertices in the current graph and in the copy, forming a new graph. Formally speaking, suppose the current graph has n vertices in total, labeled from 1 to n. First, add n new vertices labeled from $n+1$ to $2 n$. Then, for every edge (u, v) in the current graph, add an edge $(u+n, v+n)$. Lastly, add the edges $(1, n+1),(2, n+2), \ldots,(n, 2 n)$. If the current graph has n vertices and m edges, the new graph has $2 n$ vertices and $2 m+n$ edges.

Because the second operation is costly, it can only be used at most once. The first operation can be used any number of times in any order.
Find a sequence of operations such that, after all operations in the sequence, the final graph has the least possible number of edges.

Input

The first line of input contains two integers n and m, the number of vertices and the number of edges in the initial graph ($1 \leq n \leq 3 \cdot 10^{5}, n-1 \leq m \leq \frac{3(n-1)}{2}$).
Each of the next m lines contains two integers u and v denoting the endpoints of an edge ($1 \leq u, v \leq n$). The graph is connected and contains no parallel edges and no self-loops.

Output

On the first line, print two integers m^{\prime} and K, the number of edges left in the final graph and the total number of operations.
Then print K more lines. Each line represents an operation:

1. When using the first operation on vertex x, print " $1 x$ ".

2 . When using the second operation, just print " 2 ".
If there are several optimal answers, print any one of them.

Examples

	standard input		standard output	
3	3	0	6	
1	2	2		
1	3	1	1	
2	3	1	5	
		1	2	
	1	4		
7	7	1	3	
1	2	3	0	14
2	3	1	4	
2	4	1	5	
3	6	1	6	
3	7	1	7	
		2		
		1	1	

