Problem C. Permute

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

Given a decimal integer s, you need to permute the digits of s to obtain a number divisible by 7 , or determine that it is impossible.
Leading zeroes in decimal integers are allowed in this problem.

Input

The first line contains an integer T, the number of test cases $\left(1 \leq T \leq 10^{5}\right)$. The descriptions of test cases follow.
A test case contains exactly one line with ten integers $c_{0}, c_{1} \ldots c_{9}$, where c_{i} is the number of digits i in s $\left(0 \leq c_{i} \leq 10^{9}, \sum c_{i}>0\right)$.

Output

For each test case, if it is possible, print the permuted number formatted according to the rules below. Otherwise, print -1 .
Because the number s can be very large, you have to print the permuted number in segments, from left to right. First, print a line containing an integer k, the number of segments ($1 \leq k \leq 100$). Then print k more lines, the i-th of which will contain two integers r_{i} and x_{i}, indicating that the i-th segment of digits in the permuted number consists of r_{i} repetitions of the digit $x_{i}\left(r_{i} \geq 0,0 \leq x_{i} \leq 9\right)$.
It can be shown that, if an answer exists, then there also exists an answer which can be represented under the above constraints. If there are several possible solutions, print any one of them.

Example

standard input	standard output
3	2
0100100000	11
0200001001	14
010000000000000000	3
	21
	16
	19
	-1

