



## Problem F. Interval Shuffle

| Input file:   | standard input  |
|---------------|-----------------|
| Output file:  | standard output |
| Time limit:   | 1 second        |
| Memory limit: | 256 mebibytes   |

Kanade has a sequence  $A_{1...n}$  and m intervals  $[L_i, R_i]$  of indices from 1 to n, bounds included. He does m operations in sequence, one for each interval. For the *i*-th operation, Kanade can choose and perform one of the following two actions:

- 1. Choose  $x \in [L_i, R_i]$  and update  $A_x := A_x + 1$ .
- 2. Rearrange  $A_{L_i...R_i}$  in any order Kanade wants.

Now Kanade wants to know the maximum value of  $A_k$  after these operations. Find the answer for each  $k \in [1, n]$ .

## Input

The first line of input contains two integers n and m, the size of the sequence and the number of operations  $(1 \le n, m \le 2 \cdot 10^5)$ . The second line contains n integers  $A_{1...n}$ , the initial sequence  $(0 \le A_i \le 2 \cdot 10^5)$ .

Then follow *m* lines. The *i*-th of them contains two integers  $L_i$  and  $R_i$  describing the respective interval  $(1 \le L_i \le R_i \le n)$ .

## Output

Output n integers, the *i*-th of which is the maximum possible value of  $A_i$  after m operations.

## Example

| standard input | standard output |
|----------------|-----------------|
| 4 3            | 2 4 3 2         |
| 0 1 0 1        |                 |
| 2 4            |                 |
| 1 3            |                 |
| 2 3            |                 |
|                |                 |