Problem I. Directed Acyclic Graph

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
5 seconds
512 mebibytes

Recently, Rikka showed great interest in the data structures for directed acyclic graphs (DAGs). She dreams that extending classic tree-based algorithms like "weighted-chain decomposition" to their counterparts based on DAGs will be perfectly cooooool!
Now, she came up with a simple problem, and she would like to invite you to solve this problem with her.
You are given an n-node m-edge DAG G. Each node u has a non-negative integer value $v a l_{u}$. All values are set to 0 initially.
Rikka wants to perform q operations of three types described below:

1. Given u and x, set $v a l_{v}$ to x for all v reachable from u;
2. Given u and x, set $v a l_{v}$ to $\min \left\{v a l_{v}, x\right\}$ for all v reachable from u;
3. Given u, print its current value $v a l_{u}$.

Can you perform all these operations fast enough?
A node v is said to be reachable from u if there is a path starting in u and ending in v. A path is a node sequence $p_{1}, p_{2}, \ldots, p_{k}$ satisfying $\left(p_{i}, p_{i+1}\right) \in G$ for each $i=1,2, \ldots, k-1$.

Input

The first line of input contains three integers $n, m, q\left(1 \leq n, m, q \leq 10^{5}\right)$.
Then m lines follow. Each of them contains two integers x and y, representing a directed edge (x, y) in the graph $(1 \leq x, y \leq n)$. The input graph is guaranteed to be a DAG.
Then q lines follow. Each of them contains two or three integers in one of the following three formats:

- "1 $u x$ " indicating the first type of operation;
- "2 $u x$ " indicating the second type of operation;
- "3 u " indicating the third type of operation.

All parameters in the operations above satisfy $1 \leq u \leq n$ and $0 \leq x \leq 10^{9}$.

Output

For each operation of the third type, print a single line containing an integer: the current value of val_{u}.

Example

	standard input		standard output	
4	4	7	5	
1	2	1		
1	3	1		
3	4	3		
2	4			
1	1	5		
1	2	1		
3	3			
3	4			
2	1	3		
3	2	3		

