Problem A. Swapping Inversions

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

You are given a permutation x of the integers from 1 to n.
You want to sort this permutation by a sequence of operations. In one operation, you select two adjacent elements x_{i} and x_{i+1} such that $x_{i}>x_{i+1}$ and swap them. When there are multiple choices of such i, you choose one of them with equal probability. When there is no such i, the process ends.
The cost of swapping x_{i} and x_{i+1} is $\left|x_{i}-x_{i+1}\right|$. Calculate the expected total cost of sorting the permutation modulo $10^{9}+7$.

Input

The first line of input contains an integer $n\left(1 \leq n \leq 10^{6}\right)$.
The second line contains n integers $x_{1}, x_{2}, \ldots, x_{n}\left(1 \leq x_{i} \leq n\right)$. It is guaranteed that x is a permutation of the integers from 1 to n.

Output

Print a single line containing an integer: the expected total cost modulo $10^{9}+7$.
Formally, it can be shown that the expected total cost can be represented as a fraction p / q for some coprime non-negative integers p and q. For example, if the expected total cost is an integer, then we just have $q=1$. You have to print the value $p \cdot q^{-1} \bmod \left(10^{9}+7\right)$.

Examples

			standard input			
5					standard output	
1	2	3	4	5		
5					3	
1	2	5	3	4		

