

Problem D. Interval

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	512 mebibytes

You are given n intervals, the j-th of which is $I_j = [l_j, r_j]$.

Define the beauty of [L, R] as the length covered by $\bigcup_{i=1}^{n} [l_i, r_i]$.

You are given m queries, the *i*-th of which is $[A_i, B_i]$, and you need to answer:

If we uniformly sample $[L_i, R_i]$ from all possible integer pairs such that $A_i \leq L_i \leq R_i \leq B_i$, what is the expected value of the beauty of $[L_i, R_i]$?

Find the answers modulo 998 244 353.

Input

The first line contains two integers n and m $(1 \le n, m \le 2 \cdot 10^5)$.

Each of the following n lines contains two integers l_j and r_j $(0 \le l_j < r_j \le 10^8)$.

Each of the following m lines contains two integers A_i and B_i $(1 \le A_i \le B_i \le n)$.

Output

Output m lines, each of which contains the answer for a query modulo 998 244 353.

Formally, it can be shown that the expected beauty can be represented as a fraction p/q for some coprime non-negative integers p and q. You have to print the value $p \cdot q^{-1} \mod 998\,244\,353$.

Example

standard input	standard output
2 1	5
1 5	
4 8	
1 2	

Note

The size of input and output is large. Remember to use fast input and output methods to avoid getting a "Time Limit Exceeded".