Problem F. Sum

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 mebibytes

Given a rectangular array a of size $n \times m$ and a prime number p, find two rectangular arrays, b of size $K \times n$ and c of size $K \times m$, such that:

1. $0 \leq b_{i, j}<p(\forall 1 \leq i \leq K, 1 \leq j \leq n)$;
2. $0 \leq c_{i, j}<p(\forall 1 \leq i \leq K, 1 \leq j \leq m)$;
3. $\sum_{j=1}^{n} b_{i, j} \geq 1(\forall 1 \leq i \leq K)$;
4. $\sum_{j=1}^{m} c_{i, j} \geq 1(\forall 1 \leq j \leq K)$;
5. $\sum_{l=1}^{K} b_{l, i} \cdot c_{l, j} \equiv a_{i, j}(\bmod p)(\forall 1 \leq i \leq n, 1 \leq j \leq m)$.

Input

The first line of input contains four integers $n, m, K, p\left(1 \leq n \cdot m, K \cdot n, K \cdot m \leq 10^{5} ; 2 \leq p \leq 10^{9}+7 ; p\right.$ is prime).
The i-th of the following n lines contains m integers $a_{i, 1}, a_{i, 2}, \ldots, a_{i, m}\left(0 \leq a_{i, j}<p\right)$.

Output

If there is no solution, output a line "No solution!".
Otherwise, output K lines, i-th of which contains $n+m$ integers $b_{i, 1}, b_{i, 2}, \ldots, b_{i, n}, c_{i, 1}, c_{i, 2}, \ldots, c_{i, m}$.
If there are several possible answers, print any one of them.

Examples

standard input	standard output
$\begin{array}{llll} 1 & 1 & 1 & 97 \\ 0 & & & \end{array}$	No solution!
$\begin{array}{llll} \hline 3 & 3 & 1 & 97 \\ 1 & 2 & 3 & \\ 2 & 4 & 6 & \\ 3 & 6 & 9 & \end{array}$	123123

