Problem I. Nondeterministic Finite Automaton

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

A nondeterministic finite automaton (NFA) is defined as $G=\left(V, E_{0}, E_{1}, v_{0}, F\right)$, where $\left(V, E_{0}\right)$ and $\left(V, E_{1}\right)$ form two directed graphs, $v_{0} \in V$ is the initial vertex, and $F \subseteq V$ is the set of accepting vertices.

We say that NFA G recognizes a 01 -string $s=s_{1} s_{2} \ldots s_{n}$ if and only if there exists a sequence of vertices $u_{0}, u_{1} \ldots u_{n}$ such that $u_{0}=v_{0}$, the edges $\left\langle u_{i-1}, u_{i}\right\rangle \in E_{s_{i}}$ for all $i=1,2, \ldots, n$, and $u_{n} \in F$.
Define $L=L(G)$ as the minimal non-negative integer such that there exists a string s of length L which G can not recognize. If no such L exists for G, we define $L(G)=-1$.
You are given n, and you need to construct an NFA $G=\left(V, E_{0}, E_{1}, v_{0}, F\right)$ such that $|V|=n$ and $L(G)$ is large enough. The exact constraints on n and $L(G)$ are at the bottom.

Input

The first line of input contains an integer n.

Output

Output the NFA G you found.
Suppose the vertices in V are labeled by integers $0,1, \ldots, n-1$.
Firstly, output E_{0} in the following format: The first line contains an integer $e=\left|E_{0}\right|(0 \leq e \leq 1000)$. Then e lines follow. The i-th of them contains two integers x_{i} and $y_{i}\left(0 \leq x_{i}, y_{i}<n\right)$, indicating that there is an edge $\left\langle x_{i}, y_{i}\right\rangle \in E_{0}$. Note that $x_{i}=y_{i}$ is allowed.
Secondly, print E_{1} in the same format as E_{0}.
Next, print a line with the integer k.
After that, print a line containing k integers $f_{1}, f_{2}, \ldots, f_{k}$, indicating that $F=\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$.

Example

Below is an example that does not appear in the tests. Here, $L(G)=4$, because G cannot recognize the string "1010".

standard input		standard output
3	2	
	0	0
	2	2
	4	
	0	1
	1	0
	0	2
	2	1
	3	

Note

This problem has two tests: $n=6$ and $n=20$.
When $n=6$, your output's $L(G)$ should be strictly greater than 18 .
When $n=20$, your output's $L(G)$ should be strictly greater than 400 .

