Problem C. 0 Tree

Input file: standard input
Output file: standard output
Time limit: $\quad 2$ seconds
Memory limit: $\quad 512$ mebibytes

We have a tree $\langle V, E\rangle$ that consists of n vertices numbered from 1 to n. Each vertex $i \in V$ has weight a_{i}. Each bidirectional edge $e=\langle u, v\rangle \in E$ has weight b_{e}. Here, a_{i} are non-negative integers, and b_{e} are integers.

You can perform at most $4 n$ operations. For each operation, select two vertices X and Y, and a nonnegative integer W. Consider the shortest path from X to Y (a path is shortest if the number of edges k in it is minimum possible). Let this path consist of $k+1$ vertices ($v_{0}, v_{1}, v_{2}, \ldots, v_{k}$) where $v_{0}=X$, $v_{k}=Y$, and for $0 \leq i<k$, the edges $e_{i}=\left\langle v_{i}, v_{i+1}\right\rangle \in E$. The operation changes the weights as follows:

$$
a_{X} \leftarrow a_{X} \bigoplus W ; \quad a_{Y} \leftarrow a_{Y} \bigoplus W ; \quad b_{e_{i}} \leftarrow b_{e_{i}}+(-1)^{i} \cdot W \text { for } 0 \leq i<k
$$

Here, \oplus denotes the bitwise XOR operation. We can notice that, if $X=Y$, nothing will change.
You need to decide whether it is possible to make all a_{i} and all b_{e} equal to 0 . If it is possible, find a way to do so.

Input

The first line contains an integer $T(1 \leq T \leq 250)$, the number of test cases. Then T test cases follow.
The first line of each test case contains a single integer $n\left(1 \leq n \leq 10^{4}\right)$, the number of vertices.
The second line contains n non-negative integers $a_{i}\left(0 \leq a_{i}<2^{30}\right)$, the weight on each vertex.
Then $n-1$ lines follow, each of them contains three integers $u_{j}, v_{j}, w_{j}\left(1 \leq u_{j}, v_{j} \leq n,-10^{9} \leq w_{j} \leq 10^{9}\right)$, representing an edge between vertices u_{j} and v_{j} with weight w_{j}. It is guaranteed that the given edges form a tree.
It is guaranteed that $\sum n \leq 10^{5}$.

Output

For each test case, output "YES" on the first line if you can make all a_{i} and all b_{e} equal to 0 with no more than $4 n$ operations. Output "NO" otherwise.
If you can make all weights equal to 0 , output your solution in the following $k+1(0 \leq k \leq 4 n)$ lines as follows.
On the next line, print an integer k : the number of operations you make.
Then print k lines, each line containing three integers X, Y, and $W\left(1 \leq X, Y \leq n, 0 \leq W \leq 10^{14}\right)$, representing one operation.
If there are several possible solutions, print any one of them.

Example

standard input	standard output
3	YES
1	0
0	NO
2	YES
23	3
$12-2$	135
3	237
541	233
$12-5$	
$23-5$	

