

Problem D. Decomposition

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

You are given an undirected complete graph with n vertices, where n is odd. You need to partition its edge set into k disjoint simple paths, satisfying that the *i*-th simple path has length l_i , and each undirected edge is used exactly once. The given lengths l_i are integers from 1 to n-3.

A complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A simple path is a path where vertices are pairwise distinct. The length of a path is the number of edges in it.

It can be shown that an answer always exists if $\sum_{i=1}^{k} l_i = \frac{n(n-1)}{2}$ holds.

Input

The first line contains an integer T $(1 \le T \le 10^5)$, the number of test cases. Then T test cases follow.

The first line of each test case contains two integers n and k ($5 \le n \le 1000, 1 \le k \le \frac{n(n-1)}{2}, n$ is odd), the number of vertices and paths, respectively. The second line contains k integers l_1, l_2, \ldots, l_k ($1 \le l_i \le n-3$), the required lengths of the paths.

It is guaranteed that $\sum_{i=1}^{k} l_i = \frac{n(n-1)}{2}$ holds for each test case.

It is also guaranteed for the total number of edges over all test cases that $\sum \frac{n(n-1)}{2} \le 10^6$.

Output

For each test case, start by printing one line containing "Case #x:", where $x \ (1 \le x \le T)$ is the test case number. Then output k lines. In the *i*-th of these lines, print $l_i + 1$ integers denoting the vertices of the *i*-th path in order of traversal.

If there are multiple answers, print any one of them.

Example

standard input	standard output
3	Case #1:
5 6	5 4 2
2 1 1 2 2 2	2 3
78	5 1
1 1 4 3 4 1 3 4	2 1 4
5 10	3 5 2
1 1 1 1 1 1 1 1 1 1	1 3 4
	Case #2:
	6 7
	1 3
	6 5 1 2 3
	7 1 4 2
	1 6 4 7 5
	7 3
	2 6 3 5
	3 4 5 2 7
	Case #3:
	5 3
	5 2
	4 3
	1 5
	1 3
	2 3
	4 2
	4 1
	1 2
	4 5