Problem D. Decomposition

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 mebibytes

You are given an undirected complete graph with n vertices, where n is odd. You need to partition its edge set into k disjoint simple paths, satisfying that the i-th simple path has length l_{i}, and each undirected edge is used exactly once. The given lengths l_{i} are integers from 1 to $n-3$.

A complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A simple path is a path where vertices are pairwise distinct. The length of a path is the number of edges in it.

It can be shown that an answer always exists if $\sum_{i=1}^{k} l_{i}=\frac{n(n-1)}{2}$ holds.

Input

The first line contains an integer $T\left(1 \leq T \leq 10^{5}\right)$, the number of test cases. Then T test cases follow.
The first line of each test case contains two integers n and $k\left(5 \leq n \leq 1000,1 \leq k \leq \frac{n(n-1)}{2}, n\right.$ is odd $)$, the number of vertices and paths, respectively. The second line contains k integers $l_{1}, l_{2}, \ldots, l_{k}\left(1 \leq l_{i} \leq n-3\right)$, the required lengths of the paths.

It is guaranteed that $\sum_{i=1}^{k} l_{i}=\frac{n(n-1)}{2}$ holds for each test case.
It is also guaranteed for the total number of edges over all test cases that $\sum \frac{n(n-1)}{2} \leq 10^{6}$.

Output

For each test case, start by printing one line containing "Case \#x:", where $x(1 \leq x \leq T)$ is the test case number. Then output k lines. In the i-th of these lines, print $l_{i}+1$ integers denoting the vertices of the i-th path in order of traversal.
If there are multiple answers, print any one of them.

Example

standard input	standard output
	Case \#1: 542 23 51 214 352 134 Case \#2: 67 13 65123 7142 16475 73 2635 34527 Case \#3: 53 52 43 15 13 23 42 41 12 45

