Problem K. Array

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Koishi gives you an integer array B of length n satisfying $1 \leq B_{1} \leq B_{2} \leq \ldots \leq B_{n} \leq n+1$.
Let $S(T)$ denote the set of numbers that appear in array T. Koishi asks you whether an array A of length n exists such that, for any l and r such that $1 \leq l \leq r \leq n$, the equality $S(A[l, r])=S(A[1, n])$ holds if and only if $r \geq B_{l}$. If so, please construct an array A that satisfies the condition above.
Here, $A[l, r]$ represents the sub-array of A formed by $A_{l}, A_{l+1}, \ldots, A_{r}$.
You can only use integers from 0 to 10^{9} in the array. It can be shown that, if a solution exists, then there also exists a solution satisfying this condition.
Notice: If there exists such an index $i(1 \leq i \leq n)$ that $B_{i}<i$ holds, the required A must not exist.

Input

The first line contains an integer $T\left(1 \leq T \leq 6 \cdot 10^{4}\right)$, the number of test cases. Then T test cases follow. The first line of each test case contains an integer $n\left(1 \leq n \leq 2 \cdot 10^{5}\right)$, the length of array B (and A).

The next line contains n integers $B_{1}, B_{2}, \ldots, B_{n}\left(1 \leq B_{1} \leq B_{2} \leq \ldots \leq B_{n} \leq n+1\right)$, the array that Koishi gives you.
It is guaranteed that $\sum n \leq 2.6 \cdot 10^{6}$.

Output

For each test case, print one line. If such an array A doesn't exist, output -1 . Otherwise, you should output n numbers: the array A consisting of integers in the range from 0 to 10^{9}. If there are several possible solutions, print any one of them.

Example

standard input	standard output
3	2211
4	2341324
3355	-1
7	
4667888	
5	
23446	

