Problem G. Maximaze XOR sum

Time limit:	1 second
Memory limit:	512 megabytes

Let us use \oplus as the symbol for the operation of *bitwise "exclusive or"* for integers. In C++ and Java it is denoted by the character "~", in Pascal and Python — by the keyword "xor". For example, $9 \oplus 3 = 1001_2 \oplus 11_2 = 1010_2 = 10$.

You are given two integer arrays A and B of length n. Let's denote X(A) as the result of calculating bitwise "exclusive or" for all elements of the array: $X(A) = A_1 \oplus A_2 \oplus \ldots \oplus A_n$. Similarly, let's denote $X(B) = B_1 \oplus B_2 \oplus \ldots \oplus B_n$.

For each *i* from 1 to *n*, it is allowed to swap elements A_i and B_i . You must find out which elements should be swapped in order for the sum X(A) + X(B) to be maximum possible.

Input

The first line contains an integer n — the size of the arrays $(1 \le n \le 10^5)$. The next line contains n integers A_i — elements of the array A $(0 \le A_i \le 10^{18})$. The next line contains the array B in the same format.

Output

The first line of output must contain the maximum possible sum X(A) + X(B) and an integer k — the number of required swaps. The next line must contain k different integers from 1 to n — indices of the elements to be swapped.

Example

standard input	standard output
2	6 1
1 1	1
2 2	

Note

In the example after the swap the arrays are A = [2, 1] and B = [1, 2].

 $X(A) = 2 \oplus 1 = 10_2 \oplus 1_2 = 11_2 = 3, X(B) = 3, X(A) + X(B) = 6.$