Problem G. Maximaze XOR sum

Time limit: 1 second
Memory limit: 512 megabytes

Let us use \oplus as the symbol for the operation of bitwise "exclusive or" for integers. In $\mathrm{C}++$ and Java it is denoted by the character " \leadsto ", in Pascal and Python - by the keyword "xor". For example, $9 \oplus 3=1001_{2} \oplus 11_{2}=1010_{2}=10$.
You are given two integer arrays A and B of length n. Let's denote $X(A)$ as the result of calculating bitwise "exclusive or" for all elements of the array: $X(A)=A_{1} \oplus A_{2} \oplus \ldots \oplus A_{n}$. Simiarly, let's denote $X(B)=B_{1} \oplus B_{2} \oplus \ldots \oplus B_{n}$.
For each i from 1 to n, it is allowed to swap elements A_{i} and B_{i}. You must find out which elements should be swapped in order for the sum $X(A)+X(B)$ to be maximum possible.

Input

The first line contains an integer n - the size of the arrays $\left(1 \leq n \leq 10^{5}\right)$. The next line contains n integers A_{i} - elements of the array $A\left(0 \leq A_{i} \leq 10^{18}\right)$. The next line contains the array B in the same format.

Output

The first line of output must contain the maximum possible sum $X(A)+X(B)$ and an integer k - the number of required swaps. The next line must contain k different integers from 1 to $n-$ indices of the elements to be swapped.

Example

	standard input		standard output
2	1	6	1
2	2	1	

Note

In the example after the swap the arrays are $A=[2,1]$ and $B=[1,2]$.
$X(A)=2 \oplus 1=10_{2} \oplus 1_{2}=11_{2}=3, X(B)=3, X(A)+X(B)=6$.

