Problem A. New Home

$\begin{array}{ll}\text { Time limit: } & 5 \text { seconds } \\ \text { Memory limit: } & 1024 \text { megabytes }\end{array}$
Wu-Fu Street is an incredibly straight street that can be described as a one-dimensional number line, and each building's location on the street can be represented with just one number. Xiao-Ming the Time Traveler knows that there are n stores of k store-types that had opened, has opened, or will open on the street. The i-th store can be described with four integers: $x_{i}, t_{i}, a_{i}, b_{i}$, representing the store's location, the store's type, the year when it starts its business, and the year when it is closed.
Xiao-Ming the Time Traveler wants to choose a certain year and a certain location on Wu-Fu Street to live in. He has narrowed down his preference list to q location-year pairs. The i-th pair can be described with two integers: l_{i}, y_{i}, representing the location and the year of the pair. Now he wants to evaluate the life quality of these pairs. He defines the inconvenience index of a location-year pair to be the inaccessibility of the most inaccessible store-type of that pair. The inaccessibility of a location-year pair to store-type t is defined as the distance from the location to the nearest type- t store that is open in the year. We say the i-th store is open in the year y if $a_{i} \leq y \leq b_{i}$. Note that in some years, Wu-Fu Street may not have all the k store-types on it. In that case, the inconvenience index is defined as -1 .
Your task is to help Xiao-Ming find out the inconvenience index of each location-year pair.

Input

The first line of input contains integer numbers n, k, and q : number of stores, number of types and number of queries $\left(1 \leq n, q \leq 3 \cdot 10^{5}, 1 \leq k \leq n\right)$.
Next n lines contain descriptions of stores. Each description is four integers: x_{i}, t_{i}, a_{i}, and b_{i} $\left(1 \leq x_{i}, a_{i}, b_{i} \leq 10^{8}, 1 \leq t_{i} \leq k, a_{i} \leq b_{i}\right)$.
Next q lines contain the queries. Each query is two integers: l_{i}, and $y_{i}\left(1 \leq l_{i}, y_{i} \leq 10^{8}\right)$.

Output

Output q integers: for each query output its the inconvenience index.

Scoring

Subtask 1 (points: 5)

$n, q \leq 400$

Subtask 2 (points: 7)

$n, q \leq 6 \cdot 10^{4}, k \leq 400$
Subtask 3 (points: 10)
$n, q \leq 3 \cdot 10^{5}, a_{i}=1, b_{i}=10^{8}$ for all stores.

Subtask 4 (points: 23)

$n, q \leq 3 \cdot 10^{5}, a_{i}=1$ for all stores.

Subtask 5 (points: 35)

$n, q \leq 6 \cdot 10^{4}$
Subtask 6 (points: 20)
$n, q \leq 3 \cdot 10^{5}$

Examples

input	output
424	4
$\begin{array}{llll}3 & 1 & 1 & 10\end{array}$	2
9224	-1
7257	-1
41810	
53	
56	
59	
110	
213	0
1114	0
1126	-1
13	
15	
17	
111	99999999
100000000111	
11	

Note

In the first example there are four stores, two types, and four queries.

- First query: Xiao-Ming lives in location 5 in year 3. In this year, stores 1 and 2 are open, distance to store 1 is 2 , distance to store 2 is 4 . Maximum is 4 .
- Second query: Xiao-Ming lives in location 5 in year 6. In this year, stores 1 and 3 are open, distance to store 1 is 2 , distance to store 3 is 2 . Maximum is 2 .
- Third query: Xiao-Ming lives in location 5 in year 9. In this year, stores 1 and 4 are open, they both have type 1 , so there is no store of type 2 , inconvenience index is -1 .
- Same situation in fourth query.

In the second example there are two stores, one type, and three queries. Both stores have location 1 , and in all queries Xiao-Ming lives at location 1. In first two queries at least one of stores is open, so answer is 0 , in third query both stores are closed, so answer is -1 .

In the third example there is one store and one query. Distance between locations is 99999999.

