## Problem L. Permutation Transformation

$\begin{array}{ll}\text { Time limit: } & 1 \text { second } \\ \text { Memory limit: } & 512 \text { megabytes }\end{array}$
Fedor works in the department of permutation transforming. Today Fedor should solve the following problem: he needs to transform the permutation $\left[p_{1}, p_{2}, \ldots, p_{n}\right]$ of integers $1,2, \ldots, n$ to the permutation [ $q_{1}, q_{2}, \ldots, q_{n}$ ] using at most $n^{3} k$-transfer operations.
Consider an array of length $n$. The $k$-transfer operation with the parameters $(a, b)$ is defined as follows: a segment of $k$ consecutive elements starting with an element at index $a$ is cut away from the array and inserted back starting with the index $b$.


More formally: consider an array $\left[t_{1}, t_{2}, \ldots, t_{n}\right]$ and two integers $a$ and $b(1 \leq a, b \leq n-k+1)$. Let's create the temporary array $\left[r_{1}, r_{2}, \ldots, r_{n-k}\right]$, consisting of the numbers $\left[t_{1}, t_{2}, \ldots, t_{a-1}, t_{a+k}, t_{a+k+1}, \ldots, t_{n}\right]$. Then the result of the $k$-transfer with parameters $(a, b)$ for an array $t$ is an array, consisting of the numbers $\left[r_{1}, r_{2}, \ldots, r_{b-1}, t_{a}, t_{a+1}, \ldots, t_{a+k-1}, r_{b}, r_{b+1}, \ldots, r_{n-k}\right]$.

Fedor doesn't know how to solve the task, so he asks you to help him!
You are to solve the problem for $t$ test cases.

## Input

The first line contains a single integer $t(1 \leq t \leq 100)$ - the number of test cases.
Each test case consists of three lines. The first line contains two integers $n$ and $k(1 \leq k \leq n \leq 100)$.
The second line contains $n$ different integers $p_{1}, p_{2}, \ldots, p_{n}\left(1 \leq p_{i} \leq n\right)$ - the permutation $p$.
The third line contains $n$ different integers $q_{1}, q_{2}, \ldots, q_{n}\left(1 \leq q_{i} \leq n\right)$ - the permutation $q$.
It's guaranteed that the sum of $n$ over all test cases doesn't exceed 100 .

## Output

Print the answer for each test case. Output your answer for a single test case in the following format.
If it's impossible to obtain a permutation $q_{1}, q_{2}, \ldots, q_{n}$ from a permutation $p_{1}, p_{2}, \ldots, p_{n}$ using $k$-transfers, print a single line consisting of the word "NO".
Otherwise, print "YES" at the first line.
The second line must contain a single integer $m$ - the number of $k$-transfers performed to obtain the permutation $q$ from the permutation $p\left(0 \leq m \leq n^{3}\right)$. Note that you don't need to minimize $m$. It's guaranteed that if the permutation $q$ can be obtained from the permutation $p$ using $k$-transfers, then there is a solution that requires at most $n^{3}$ operations.
Each of the following $m$ lines should contain two integers - parameters $a$ and $b$ for the corresponding $k$-transfer.

## Example

|  |  | standard input |  | standard output |
| :--- | :--- | :--- | :--- | :--- |
| 3 |  |  | YES |  |
| 2 | 1 |  | 0 |  |
| 2 | 1 | NO |  |  |
| 2 | 1 | YES |  |  |
| 4 | 2 | 2 |  |  |
| 1 | 2 | 3 | 4 | 1 |
| 1 | 2 | 4 | 3 | 2 |
| 3 | 2 |  | 12 |  |
| 2 | 1 | 3 |  |  |
| 1 | 3 | 2 |  |  |

## Note

In the third test case there is another way to obtain a permutation $q$ from a permutation $p$ - a single $k$-transfer with the parameters $a=2, b=1$.

