Problem C. Duathlon

Time limit: 1 second
Memory limit: 1024 megabytes

The Byteburg's street network consists of n intersections linked by m two-way street segments. Recently, the Byteburg was chosen to host the upcoming duathlon championship. This competition consists of two legs: a running leg, followed by a cycling leg.
The route for the competition should be constructed in the following way. First, three distinct intersections s, c, and f should be chosen for start, change and finish stations. Then the route for the competition should be built. The route should start in s, go through c and end in f. For safety reasons, the route should visit each intersection at most once.
Before planning the route, the mayor wants to calculate the number of ways to choose intersections s, c, and f in such a way that it is possible to build the route for them. Help him to calculate this number.

Input

The first line contains integers n and m : number of intersections, and number of roads. Next m lines contain descriptions of roads $\left(1 \leq n \leq 10^{5}, 1 \leq m \leq 2 \cdot 10^{5}\right)$. Each road is described with pair of integers v_{i}, u_{i}, the indices of intersections connected by the road ($1 \leq v_{i}, u_{i} \leq n, v_{i} \neq u_{i}$). For each pair of intersections there is at most one road connecting them.

Output

Output the number of ways to choose intersections s, c, and f for start, change and finish stations, in such a way that it is possible to build the route for competition.

Scoring

Subtask 1 (points: 5)

$n \leq 10, m \leq 100$

Subtask 2 (points: 11)

$n \leq 50, m \leq 100$

Subtask 3 (points: 8)

$n \leq 100000$, there are at most two roads that ends in each intersection.

Subtask 4 (points: 10)

$n \leq 1000$, there are no cycles in the street network. The cycle is the sequence of $k(k \geq 3)$ distinct intersections $v_{1}, v_{2}, \ldots v_{k}$, such that there is a road connecting v_{i} with v_{i+1} for all i from 1 to $k-1$, and there is a road connecting v_{k} and v_{1}.

Subtask 5 (points: 13)

$n \leq 100000$, there are no cycles in the street network.

Subtask 6 (points: 15)

$n \leq 1000$, for each intersection there is at most one cycle that contains it.

Subtask 7 (points: 20)

$n \leq 100000$, for each intersection there is at most one cycle that contains it.

Subtask 8 (points: 8)
$n \leq 1000, m \leq 2000$
Subtask 9 (points: 10)
$n \leq 100000, m \leq 200000$

Examples

	input	
4	3	
1	2	8
2	3	
3	4	
4	4	14
1	2	
2	3	
3	4	
4	2	

Note

In the first example there are 8 ways to choose the triple $(s, c, f):(1,2,3),(1,2,4),(1,3,4),(2,3,4)$, $(3,2,1),(4,2,1),(4,3,1),(4,3,2)$.

In the second example there are 14 ways to choose the triple $(s, c, f):(1,2,3),(1,2,4),(1,3,4),(1,4,3)$, $(2,3,4),(2,4,3),(3,2,1),(3,2,4),(3,4,1),(3,4,2),(4,2,1),(4,2,3),(4,3,1),(4,3,2)$.

