Problem J. Joining Powers

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

Consider the set of infinite sequences:

- sequence #1, named S(1), is 1, 2, 3, ..., n, ...;
- sequence #2, named S(2), is $1, 4, 9, ..., n^2, ...;$
- sequence #3, named S(3), is $1, 8, 27, \ldots, n^3, \ldots$;
- and so on;
- sequence #k, named S(k), is $1, 2^k, 3^k, \ldots, n^k, \ldots$;
- and so on;

Obviously, each of these sequences is monotonically increasing.

We say that sequence $S(i_1, i_2, \ldots, i_m)$ is a union of sequences $S(i_1), S(i_2), \ldots, S(i_m)$ if:

- each element of each sequence $S(i_1), S(i_2), \ldots, S(i_m)$ belongs to $S(i_1, i_2, \ldots, i_m)$;
- each element, that belongs to several sequences $S(i_1), S(i_2), \ldots, S(i_m)$, belongs to $S(i_1, i_2, \ldots, i_m)$ exactly once;
- sequence $S(i_1, i_2, \ldots, i_m)$ is monotonically increasing.

For example, S(2,3,5) is $1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, \ldots$

Your task is to write a program which will process a series of queries in the form "find the N-th element of $S(i_1, i_2, \ldots, i_m)$ ", where $N, m, i_1, i_2, \ldots, i_m$ are input data.

Input

The first line of the input contains single integer — quantity of queries $q(1 \le q \le 987)$. Afterwards, input data contain exactly q queries. Each query takes two lines. The first line of each query contains N and m, where $N(1 \le N \le 10^9)$ is the index (1-based) of the element to be determined, and $m(1 \le m \le 42)$ is the quantity of sequences to be united. The second line of each query contains integers i_1, i_2, \ldots, i_m (all different, all in range $1 \le i_k \le 50$).

Output

The program should output results for all queries, each in a separate line. It's guaranteed that answer does not exceed 10^{17} .

Example

standard input	standard output
2	81
12 3	38416
2 3 5	
17 2	
4 7	